
In $N{{a}_{2}}[Fe{{(CN)}_{5}}NO]$, sodium nitroprusside:
(A) The oxidation state of Fe is +2.
(B) This has NO+ as a ligand.
(C) Both of the above
(D) None of the above
Answer
161.7k+ views
Hint: Remember that nitric oxide is a non-innocent ligand i.e. a ligand in a metal complex where its oxidation state is unclear. This concept results in the assumption that redox reactions in metal complexes are either localized to their metals or ligands, which is a useful simplification of the overarching concept.
Complete step by step answer:
Let us now analyse Sodium Nitroprusside as a compound to help us answer this question.
Sodium Nitroprusside is an inorganic compound with the formula, $N{{a}_{2}}[Fe{{(CN)}_{5}}NO]$ which is usually found in its dihydrate form, $N{{a}_{2}}[Fe{{(CN)}_{5}}NO]\cdot 2{{H}_{2}}O$. It is a red-coloured sodium salt which dissolves in either water or ethanol to give solutions which contain the complex dianion ${{[Fe{{(CN)}_{5}}NO]}^{2-}}$.
We observe that Nitroprusside is a complex anion which possesses an octahedral iron(III) centre (since Iron’s oxidation state in this compound is +3) which is surrounded by five tightly bound cyanide ligands and one linear nitric oxide ligand with its bond angle Fe-N-O angle being ${{176.2}^{\circ }}$ according to its structure which VSEPR theory.
Now, even though nitric oxide is a non-innocent ligand, the linear Fe-N-O angle results in the relatively short N-O distance of 113 pm and the subsequently high stretching frequency of $1947c{{m}^{1-}}$ , the complex is thus found to be containing an $N{{O}^{+}}$ ligand. Consequently, iron is assigned an oxidation state of +2; as a result of which the iron centre has a diamagnetic low-spin d6 electron configuration but a paramagnetic long-lived metastable state has been observed by EPR spectroscopy.
Thus, we can safely conclude that the answer to this question is (c).
Note: This compound decomposes to form sodium ferrous ferrocyanide, sodium ferrocyanide, nitric oxide, and cyanogen at about 450 °C. It decomposes in aqueous acid to liberate hydrocyanic acid (HCN) and if shielded from light, the concentrated solution is stable for more than two years at room temperature.
Complete step by step answer:
Let us now analyse Sodium Nitroprusside as a compound to help us answer this question.
Sodium Nitroprusside is an inorganic compound with the formula, $N{{a}_{2}}[Fe{{(CN)}_{5}}NO]$ which is usually found in its dihydrate form, $N{{a}_{2}}[Fe{{(CN)}_{5}}NO]\cdot 2{{H}_{2}}O$. It is a red-coloured sodium salt which dissolves in either water or ethanol to give solutions which contain the complex dianion ${{[Fe{{(CN)}_{5}}NO]}^{2-}}$.
We observe that Nitroprusside is a complex anion which possesses an octahedral iron(III) centre (since Iron’s oxidation state in this compound is +3) which is surrounded by five tightly bound cyanide ligands and one linear nitric oxide ligand with its bond angle Fe-N-O angle being ${{176.2}^{\circ }}$ according to its structure which VSEPR theory.
Now, even though nitric oxide is a non-innocent ligand, the linear Fe-N-O angle results in the relatively short N-O distance of 113 pm and the subsequently high stretching frequency of $1947c{{m}^{1-}}$ , the complex is thus found to be containing an $N{{O}^{+}}$ ligand. Consequently, iron is assigned an oxidation state of +2; as a result of which the iron centre has a diamagnetic low-spin d6 electron configuration but a paramagnetic long-lived metastable state has been observed by EPR spectroscopy.
Thus, we can safely conclude that the answer to this question is (c).
Note: This compound decomposes to form sodium ferrous ferrocyanide, sodium ferrocyanide, nitric oxide, and cyanogen at about 450 °C. It decomposes in aqueous acid to liberate hydrocyanic acid (HCN) and if shielded from light, the concentrated solution is stable for more than two years at room temperature.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main Mock Test Series Class 12 Chemistry for FREE

Classification of Drugs Based on Pharmacological Effect, Drug Action

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

JEE Main 2024 Cut-off for NIT Surathkal

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes

List of Fastest Century in IPL History

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
