
In damped oscillations, damping force is directly proportional to speed to oscillator. If amplitude becomes half of its maximum value in 1s, then after 2s amplitude will be (initial amplitude = ${A_0}$)
A. $\dfrac{1}{4}{A_0}$
B. $\dfrac{1}{2}{A_0}$
C. $\dfrac{1}{5}{A_0}$
.D. $\dfrac{1}{7}{A_0}$
Answer
232.8k+ views
Hint:In case of damped oscillations, first try to find the relation between the amplitude at time t and the initial amplitude. Then put the values of both the amplitude and try to find the time t and finally using that time value find the value of amplitude after 2 sec time.
Formula used
$A = {A_0}{e^{ - \alpha t}}$
Where, A is the amplitude at time t.
And ${A_0}$is the initial amplitude.
Complete answer:
For case 1: t = 1 sec
Given the amplitude at time t = 1 sec becomes half of its initial amplitude.
$A = \dfrac{{{A_0}}}{2}$
Putting this value in the formula, we get;
$\dfrac{{{A_0}}}{2} = {A_0}{e^{ - \alpha }}$
After solving, we get: ${e^{ - \alpha }} = \dfrac{1}{2}$ (equation 1)
For case 2: t=2 sec
$A = {A_0}{e^{ - 2\alpha }}$
Putting the value from equation 1, we get;
$A = {A_0}{\left( {\dfrac{1}{2}} \right)^2}$
After solving, we get;
$A = \dfrac{{{A_0}}}{4}$
Therefore, amplitude at time t = 2 sec will become 1/4 times of the initial amplitude.
Hence, the correct answer is Option(A).
Note:Be careful about the change in amplitude according to the time given and how many times it becomes of the initial amplitude or the maximum amplitude. Use the same formula for both the case at t = 1 sec and t = 2 sec. Also use the value of the ${e^{ - \alpha }} = \dfrac{1}{2}$to get the required result.
Formula used
$A = {A_0}{e^{ - \alpha t}}$
Where, A is the amplitude at time t.
And ${A_0}$is the initial amplitude.
Complete answer:
For case 1: t = 1 sec
Given the amplitude at time t = 1 sec becomes half of its initial amplitude.
$A = \dfrac{{{A_0}}}{2}$
Putting this value in the formula, we get;
$\dfrac{{{A_0}}}{2} = {A_0}{e^{ - \alpha }}$
After solving, we get: ${e^{ - \alpha }} = \dfrac{1}{2}$ (equation 1)
For case 2: t=2 sec
$A = {A_0}{e^{ - 2\alpha }}$
Putting the value from equation 1, we get;
$A = {A_0}{\left( {\dfrac{1}{2}} \right)^2}$
After solving, we get;
$A = \dfrac{{{A_0}}}{4}$
Therefore, amplitude at time t = 2 sec will become 1/4 times of the initial amplitude.
Hence, the correct answer is Option(A).
Note:Be careful about the change in amplitude according to the time given and how many times it becomes of the initial amplitude or the maximum amplitude. Use the same formula for both the case at t = 1 sec and t = 2 sec. Also use the value of the ${e^{ - \alpha }} = \dfrac{1}{2}$to get the required result.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

