
In damped oscillation mass is 2 Kg and spring constant is $500\,N/m$ and damping coefficient is $1\,Kg/s$. If mass is displaced by 20 cm from its mean position and then released what will be value of its mechanical energy after 4 seconds?
A. 2.37 J
B. 1.37 J
C. 10 J
D. 5 J
Answer
220.2k+ views
Hint: First try to find the relation between the mechanical energy, mass, spring constant, damping coefficient, displaced position of mass and the time. After finding the required relation put all the values from the question and finally get the required answer that is the mechanical energy.
Formula used
Mechanical energy is given by:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Where, m is the mass of the body.
k is spring constant.
b is the damping coefficient.
t is time.
x is position displaced.
Complete answer:
First start with the given information:
Mass of the body, m = 2 Kg
Spring constant, $k = 500N/m$
Damping coefficient, $b = 1Kg/s$
Time, $t = 4\sec $
Position displaced, $x = 20cm$
We know that the mechanical energy in case of damping oscillation:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Putting values from the question in above equation;
$E=\dfrac{1}{2}\times500\times (0.2)^{2}e^{\frac{-1\times4}{2}}$
$E=250\times (0.4)\times e^{-2}$
Further solving, we get;
$E = 100{e^{ - 2}}$
$E = 1.37\,J$
Hence, the correct answer is Option B.
Note:Here in order to find the mechanical energy in case of damped oscillation all the values were already given in the question so we just have to put all the values and get the required answer, if any of the value is missing in any other case then the answer will differ in that case.
Formula used
Mechanical energy is given by:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Where, m is the mass of the body.
k is spring constant.
b is the damping coefficient.
t is time.
x is position displaced.
Complete answer:
First start with the given information:
Mass of the body, m = 2 Kg
Spring constant, $k = 500N/m$
Damping coefficient, $b = 1Kg/s$
Time, $t = 4\sec $
Position displaced, $x = 20cm$
We know that the mechanical energy in case of damping oscillation:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Putting values from the question in above equation;
$E=\dfrac{1}{2}\times500\times (0.2)^{2}e^{\frac{-1\times4}{2}}$
$E=250\times (0.4)\times e^{-2}$
Further solving, we get;
$E = 100{e^{ - 2}}$
$E = 1.37\,J$
Hence, the correct answer is Option B.
Note:Here in order to find the mechanical energy in case of damped oscillation all the values were already given in the question so we just have to put all the values and get the required answer, if any of the value is missing in any other case then the answer will differ in that case.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

