
In damped oscillation mass is 2 Kg and spring constant is $500\,N/m$ and damping coefficient is $1\,Kg/s$. If mass is displaced by 20 cm from its mean position and then released what will be value of its mechanical energy after 4 seconds?
A. 2.37 J
B. 1.37 J
C. 10 J
D. 5 J
Answer
163.5k+ views
Hint: First try to find the relation between the mechanical energy, mass, spring constant, damping coefficient, displaced position of mass and the time. After finding the required relation put all the values from the question and finally get the required answer that is the mechanical energy.
Formula used
Mechanical energy is given by:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Where, m is the mass of the body.
k is spring constant.
b is the damping coefficient.
t is time.
x is position displaced.
Complete answer:
First start with the given information:
Mass of the body, m = 2 Kg
Spring constant, $k = 500N/m$
Damping coefficient, $b = 1Kg/s$
Time, $t = 4\sec $
Position displaced, $x = 20cm$
We know that the mechanical energy in case of damping oscillation:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Putting values from the question in above equation;
$E=\dfrac{1}{2}\times500\times (0.2)^{2}e^{\frac{-1\times4}{2}}$
$E=250\times (0.4)\times e^{-2}$
Further solving, we get;
$E = 100{e^{ - 2}}$
$E = 1.37\,J$
Hence, the correct answer is Option B.
Note:Here in order to find the mechanical energy in case of damped oscillation all the values were already given in the question so we just have to put all the values and get the required answer, if any of the value is missing in any other case then the answer will differ in that case.
Formula used
Mechanical energy is given by:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Where, m is the mass of the body.
k is spring constant.
b is the damping coefficient.
t is time.
x is position displaced.
Complete answer:
First start with the given information:
Mass of the body, m = 2 Kg
Spring constant, $k = 500N/m$
Damping coefficient, $b = 1Kg/s$
Time, $t = 4\sec $
Position displaced, $x = 20cm$
We know that the mechanical energy in case of damping oscillation:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Putting values from the question in above equation;
$E=\dfrac{1}{2}\times500\times (0.2)^{2}e^{\frac{-1\times4}{2}}$
$E=250\times (0.4)\times e^{-2}$
Further solving, we get;
$E = 100{e^{ - 2}}$
$E = 1.37\,J$
Hence, the correct answer is Option B.
Note:Here in order to find the mechanical energy in case of damped oscillation all the values were already given in the question so we just have to put all the values and get the required answer, if any of the value is missing in any other case then the answer will differ in that case.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
