
If x is real, then the value of ${x^2} - 6x + 13$ will not be less than
A. 4
B. 6
C. 7
D. 8
Answer
217.5k+ views
Hint: Equate the above expression to y. Use the fact that the discriminant must be greater than or equal to 0 if the roots of the equation are real. Find the range of y and the minimum value of the expression can be found using this range.
Formula used: Discriminant of the standard quadratic equation $a{x^2} + bx + c = 0$ is ${b^2} - 4ac$
Complete step by step solution:
Let $y = {x^2} - 6x + 13$
${x^2} - 6x + 13 - y = 0$
It is given to us that x is real. Therefore, the discriminant must be greater than or equal to 0.
(Discriminant of the standard quadratic equation $a{x^2} + bx + c = 0$ is ${b^2} - 4ac$).
Therefore, ${\left( { - 6} \right)^2} - 4\left( 1 \right)\left( {13 - y} \right) \geqslant 0$
$36 - 52 + 4y \geqslant 0$
$4y \geqslant 16$
Dividing both sides of the inequality by 4,
$y \geqslant 4$
$y \in [4,\infty )$
The minimum value of y is 4.
Therefore, the correct answer is option A. 4
Note: This question can also be solved using applications of derivatives.
Let $f(x) = {x^2} - 6x + 13$.
Now find the first derivative of $f(x)$ and equate it to 0 to get the critical point.
$f'(x) = 2x - 6 = 0$
$x = 3$
Find the second derivative at the critical point to check if it is the point of minima or point of maxima.
$f''(x) = 2 > 0$. Since $f''(3) > 0$, we will get the minimum value of $f(x)$ at $x = 3$.
$f(3) = {3^2} - 6(3) + 13 = 9 - 18 + 13 = 4$. Since 4 is the minimum value of $f(x)$, ${x^2} - 6x + 13$ cannot be less than 4.
Formula used: Discriminant of the standard quadratic equation $a{x^2} + bx + c = 0$ is ${b^2} - 4ac$
Complete step by step solution:
Let $y = {x^2} - 6x + 13$
${x^2} - 6x + 13 - y = 0$
It is given to us that x is real. Therefore, the discriminant must be greater than or equal to 0.
(Discriminant of the standard quadratic equation $a{x^2} + bx + c = 0$ is ${b^2} - 4ac$).
Therefore, ${\left( { - 6} \right)^2} - 4\left( 1 \right)\left( {13 - y} \right) \geqslant 0$
$36 - 52 + 4y \geqslant 0$
$4y \geqslant 16$
Dividing both sides of the inequality by 4,
$y \geqslant 4$
$y \in [4,\infty )$
The minimum value of y is 4.
Therefore, the correct answer is option A. 4
Note: This question can also be solved using applications of derivatives.
Let $f(x) = {x^2} - 6x + 13$.
Now find the first derivative of $f(x)$ and equate it to 0 to get the critical point.
$f'(x) = 2x - 6 = 0$
$x = 3$
Find the second derivative at the critical point to check if it is the point of minima or point of maxima.
$f''(x) = 2 > 0$. Since $f''(3) > 0$, we will get the minimum value of $f(x)$ at $x = 3$.
$f(3) = {3^2} - 6(3) + 13 = 9 - 18 + 13 = 4$. Since 4 is the minimum value of $f(x)$, ${x^2} - 6x + 13$ cannot be less than 4.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Convex and Concave Lenses Explained: Uses, Differences & Diagrams

Coulomb's Law: Definition, Formula, and Examples

De Broglie Equation Explained: Formula, Derivation & Uses

Differentiation in Kinematics: Concepts & Examples Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

