
If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to
A. $5$
B. $6$
C. $1$
D. $2$
Answer
217.2k+ views
Hint: By graphing the equation and locating the maximum point on the graph, you can find the maximum value graphically. Identifying whether your equation produces a maximum or minimum is the first step. Use the given quadratic equation to find the value of discriminant and further it depends on the value of discriminant which decides if the value is maximum or minimum.
Formula Used:
You can use the following equation to determine the maximum if your equation has the form $a{x^2} + bx + c$ :
${b^2} - 4ac \geqslant 0$ .
Complete step-by-step solution:
We can write the given equation in terms of $y$ or $f(x)$ as shown below:
$f(x) = 5 + 4x - 4{x^2} = y$ .
To find the maximum value of $f(x) = 5 + 4x - 4{x^2} = y$ or $f(x) = 5 + 4x - 4{x^2} - y = 0$
We use the formula ${b^2} - 4ac \geqslant 0$ as $x$ is real.
This equation is of the form $a{x^2} + bx + c$ . Comparing this equation with the given equation, we get
$a = - 4$ , $b = 4$ and $c = 5 - y$ .
Substituting value in the formula, we get
$16 - 4 \times ( - 4)(5 - y) \geqslant 0$
$ - 6 + y \leqslant 0$
We get
$y \leqslant 6$
So, $f(x)$ has the maximum value of $6$ .
Hence, the correct option is B.
Note: We also have an alternative method to solve and get the maximum value of the given quadratic equation. If we have, $a{x^2} + bx + c$ Therefore, the minimum or maximum is attained when: $x = - \dfrac{b}{{2a}}$ . Determine whether it is a minimum or maximum by looking at the sign of $a$: $a > 0$ $ \Rightarrow $ minimum and \[a < 0\] $ \Rightarrow $ maximum.
Formula Used:
You can use the following equation to determine the maximum if your equation has the form $a{x^2} + bx + c$ :
${b^2} - 4ac \geqslant 0$ .
Complete step-by-step solution:
We can write the given equation in terms of $y$ or $f(x)$ as shown below:
$f(x) = 5 + 4x - 4{x^2} = y$ .
To find the maximum value of $f(x) = 5 + 4x - 4{x^2} = y$ or $f(x) = 5 + 4x - 4{x^2} - y = 0$
We use the formula ${b^2} - 4ac \geqslant 0$ as $x$ is real.
This equation is of the form $a{x^2} + bx + c$ . Comparing this equation with the given equation, we get
$a = - 4$ , $b = 4$ and $c = 5 - y$ .
Substituting value in the formula, we get
$16 - 4 \times ( - 4)(5 - y) \geqslant 0$
$ - 6 + y \leqslant 0$
We get
$y \leqslant 6$
So, $f(x)$ has the maximum value of $6$ .
Hence, the correct option is B.
Note: We also have an alternative method to solve and get the maximum value of the given quadratic equation. If we have, $a{x^2} + bx + c$ Therefore, the minimum or maximum is attained when: $x = - \dfrac{b}{{2a}}$ . Determine whether it is a minimum or maximum by looking at the sign of $a$: $a > 0$ $ \Rightarrow $ minimum and \[a < 0\] $ \Rightarrow $ maximum.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Difference Between: Key Facts for Students

2D vs 3D Shapes: Key Differences Explained for Students

AC vs DC Generator: Key Differences Explained for Students

Additive Identity vs Multiplicative Identity: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

