
If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to
A. $5$
B. $6$
C. $1$
D. $2$
Answer
162.9k+ views
Hint: By graphing the equation and locating the maximum point on the graph, you can find the maximum value graphically. Identifying whether your equation produces a maximum or minimum is the first step. Use the given quadratic equation to find the value of discriminant and further it depends on the value of discriminant which decides if the value is maximum or minimum.
Formula Used:
You can use the following equation to determine the maximum if your equation has the form $a{x^2} + bx + c$ :
${b^2} - 4ac \geqslant 0$ .
Complete step-by-step solution:
We can write the given equation in terms of $y$ or $f(x)$ as shown below:
$f(x) = 5 + 4x - 4{x^2} = y$ .
To find the maximum value of $f(x) = 5 + 4x - 4{x^2} = y$ or $f(x) = 5 + 4x - 4{x^2} - y = 0$
We use the formula ${b^2} - 4ac \geqslant 0$ as $x$ is real.
This equation is of the form $a{x^2} + bx + c$ . Comparing this equation with the given equation, we get
$a = - 4$ , $b = 4$ and $c = 5 - y$ .
Substituting value in the formula, we get
$16 - 4 \times ( - 4)(5 - y) \geqslant 0$
$ - 6 + y \leqslant 0$
We get
$y \leqslant 6$
So, $f(x)$ has the maximum value of $6$ .
Hence, the correct option is B.
Note: We also have an alternative method to solve and get the maximum value of the given quadratic equation. If we have, $a{x^2} + bx + c$ Therefore, the minimum or maximum is attained when: $x = - \dfrac{b}{{2a}}$ . Determine whether it is a minimum or maximum by looking at the sign of $a$: $a > 0$ $ \Rightarrow $ minimum and \[a < 0\] $ \Rightarrow $ maximum.
Formula Used:
You can use the following equation to determine the maximum if your equation has the form $a{x^2} + bx + c$ :
${b^2} - 4ac \geqslant 0$ .
Complete step-by-step solution:
We can write the given equation in terms of $y$ or $f(x)$ as shown below:
$f(x) = 5 + 4x - 4{x^2} = y$ .
To find the maximum value of $f(x) = 5 + 4x - 4{x^2} = y$ or $f(x) = 5 + 4x - 4{x^2} - y = 0$
We use the formula ${b^2} - 4ac \geqslant 0$ as $x$ is real.
This equation is of the form $a{x^2} + bx + c$ . Comparing this equation with the given equation, we get
$a = - 4$ , $b = 4$ and $c = 5 - y$ .
Substituting value in the formula, we get
$16 - 4 \times ( - 4)(5 - y) \geqslant 0$
$ - 6 + y \leqslant 0$
We get
$y \leqslant 6$
So, $f(x)$ has the maximum value of $6$ .
Hence, the correct option is B.
Note: We also have an alternative method to solve and get the maximum value of the given quadratic equation. If we have, $a{x^2} + bx + c$ Therefore, the minimum or maximum is attained when: $x = - \dfrac{b}{{2a}}$ . Determine whether it is a minimum or maximum by looking at the sign of $a$: $a > 0$ $ \Rightarrow $ minimum and \[a < 0\] $ \Rightarrow $ maximum.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

IIT JEE Main Chemistry 2025: Syllabus, Important Chapters, Weightage

JEE Main Maths Question Paper PDF Download with Answer Key

JEE Main 2025 Session 2 City Intimation Slip Released - Download Link

Trending doubts
JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
