
If the unit of work is \[100J\], the unit of power is \[1KW\], the unit of time in second is:
A) \[{10^{ - 1}}\]
B) \[{10^{}}\]
C) \[{10^{ - 2}}\]
D) \[{10^{ - 3}}\]
Answer
233.1k+ views
Hint: As we know that, we have to find the unit of time. According to the question we have energy (unit of work) and power. So as per given data we can use the following formula to find the unit of time. It can also be solved using dimensional formulas.
Complete step by step answer:
The data given in the question are
Energy = \[100J\]
Power = \[10KW\] = \[1000W\]
We have to find the unit of time in second,
\[{{Energy }} = {{ Power }} \times {{ Time}}\]
\[{{Time = }}\dfrac{{{{Energy}}}}{{{{Power}}}} = \dfrac{{100}}{{1000}} = \dfrac{1}{{10}} = {10^{ - 1}}\].
Additional information:
Energy: is the capacity when we can do the work. The unit of energy is joule.
Power: it is the rate of doing the work. The unit of power is watt.
Work: the amount of energy transfer that occurs when a particle is moved to some distance by an external force. The unit of work is also joule.
We can also solve the question using dimension formulas as shown below.
Energy = \[100J\] \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Power = \[10KW\] = \[1000W\] = \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 3}}} \right]\]
\[{{Time = }}\dfrac{{{{Energy}}}}{{{{Power}}}} = \dfrac{{100}}{{1000}} = \dfrac{{{{M}}{{{L}}^2}{{{T}}^{ - 2}}}}{{{{M}}{{{L}}^2}{{{T}}^{ - 3}}}} = {{{T}}^1} = \dfrac{1}{{10}} = {10^{ - 1}}\].
Note: The base formula used here is Energy = Power × Time.
If data of the time and power is given in the question then we can find energy by multiplying both power and time. Similarly, if we have the data of time and energy then we can find the power by dividing both time and energy. If we have the data of power and energy then we can get the value of time by dividing both power and energy.
The dimension formula for some physical quantities:
Force \[ = {{mass }} \times {{ acceleration = }}\left[ {{M}} \right] \times \left[ {{{L }}{{{T}}^{ - 2}}} \right] = \left[ {{{M L }}{{{T}}^{ - 2}}} \right]\]
Work \[ = {{force }} \times {{ distance = }}\left[ {{{M L }}{{{T}}^{ - 2}}} \right] \times \left[ {{L}} \right] = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Energy = work \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Power \[ = \dfrac{{{{work}}}}{{{{time}}}} = \dfrac{{\left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]}}{{\left[ {{T}} \right]}} = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 3}}} \right]\].
Complete step by step answer:
The data given in the question are
Energy = \[100J\]
Power = \[10KW\] = \[1000W\]
We have to find the unit of time in second,
\[{{Energy }} = {{ Power }} \times {{ Time}}\]
\[{{Time = }}\dfrac{{{{Energy}}}}{{{{Power}}}} = \dfrac{{100}}{{1000}} = \dfrac{1}{{10}} = {10^{ - 1}}\].
Additional information:
Energy: is the capacity when we can do the work. The unit of energy is joule.
Power: it is the rate of doing the work. The unit of power is watt.
Work: the amount of energy transfer that occurs when a particle is moved to some distance by an external force. The unit of work is also joule.
We can also solve the question using dimension formulas as shown below.
Energy = \[100J\] \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Power = \[10KW\] = \[1000W\] = \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 3}}} \right]\]
\[{{Time = }}\dfrac{{{{Energy}}}}{{{{Power}}}} = \dfrac{{100}}{{1000}} = \dfrac{{{{M}}{{{L}}^2}{{{T}}^{ - 2}}}}{{{{M}}{{{L}}^2}{{{T}}^{ - 3}}}} = {{{T}}^1} = \dfrac{1}{{10}} = {10^{ - 1}}\].
Note: The base formula used here is Energy = Power × Time.
If data of the time and power is given in the question then we can find energy by multiplying both power and time. Similarly, if we have the data of time and energy then we can find the power by dividing both time and energy. If we have the data of power and energy then we can get the value of time by dividing both power and energy.
The dimension formula for some physical quantities:
Force \[ = {{mass }} \times {{ acceleration = }}\left[ {{M}} \right] \times \left[ {{{L }}{{{T}}^{ - 2}}} \right] = \left[ {{{M L }}{{{T}}^{ - 2}}} \right]\]
Work \[ = {{force }} \times {{ distance = }}\left[ {{{M L }}{{{T}}^{ - 2}}} \right] \times \left[ {{L}} \right] = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Energy = work \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Power \[ = \dfrac{{{{work}}}}{{{{time}}}} = \dfrac{{\left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]}}{{\left[ {{T}} \right]}} = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 3}}} \right]\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

