
If the temperature of a hot body is raised by 0.5%, then the heat energy radiated would increases by:
(A) 0.5%
(B) 1.0%
(C) 1.5%
(D) 2.0%
Answer
153k+ views
Hint Heat energy radiated is proportional to fourth power of temperature. So the ratio of final heat energy to the initial is equal to the fourth power, the ratio of the final temperature to the initial temperature. The final temperature is changed by 0.5%. Incorporating this change, the change in heat radiation is evaluated.
Complete step-by-step answer
The rate at which heat energy is radiated by a hot body is given by
$Q = \sigma {T^4}A$
From this we know that
$Q \propto {T^4}$
So, let Q1 and Q2 be the initial and final heat energy at temperatures T1 and T2 respectively.
It is given that temperature is increased by 0.5%, so
T1= t K
\[{T_2} = {\text{ }}t{\text{ }} + {\text{ }}(0.5{\text{ }}\% {\text{ }} \times t){\text{ }} = 1.005t{\text{ }}K\]
Using the temperature and energy relation above,
$
\dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{Q_2} = \dfrac{{{{(1.005t)}^4} \times {Q_1}}}{{{t^4}}} \\
{Q_2} = 1.02{Q_1} \\
$
Now, percentage increase in heat energy radiated is given by,
$
\Delta Q\% = \dfrac{{{Q_2} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = \dfrac{{1.02{Q_1} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = 0.02 \times 100 \\
\Delta Q\% = 2\% \\
$
Hence, the heat energy radiated is increased by 2%
The correct option is D.
Note The rate at which the heat energy radiated by the hot body depends on area of the body and temperature. $\sigma $is the Stephen-Boltzmann constant whose value is \[5.670 \times {10^{ - 8}}W{m^{ - 2}}{K^{ - 4}}\]
Complete step-by-step answer
The rate at which heat energy is radiated by a hot body is given by
$Q = \sigma {T^4}A$
From this we know that
$Q \propto {T^4}$
So, let Q1 and Q2 be the initial and final heat energy at temperatures T1 and T2 respectively.
It is given that temperature is increased by 0.5%, so
T1= t K
\[{T_2} = {\text{ }}t{\text{ }} + {\text{ }}(0.5{\text{ }}\% {\text{ }} \times t){\text{ }} = 1.005t{\text{ }}K\]
Using the temperature and energy relation above,
$
\dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{Q_2} = \dfrac{{{{(1.005t)}^4} \times {Q_1}}}{{{t^4}}} \\
{Q_2} = 1.02{Q_1} \\
$
Now, percentage increase in heat energy radiated is given by,
$
\Delta Q\% = \dfrac{{{Q_2} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = \dfrac{{1.02{Q_1} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = 0.02 \times 100 \\
\Delta Q\% = 2\% \\
$
Hence, the heat energy radiated is increased by 2%
The correct option is D.
Note The rate at which the heat energy radiated by the hot body depends on area of the body and temperature. $\sigma $is the Stephen-Boltzmann constant whose value is \[5.670 \times {10^{ - 8}}W{m^{ - 2}}{K^{ - 4}}\]
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
