
If the radius of curvature of the path of two particles of same masses are in the ratio 1 : 2, then in order to have constant centripetal force, their velocity, should be in the ratio of
A. \[1:4\]
B. \[4:1\]
C. \[\sqrt 2 :1\]
D. \[1:\sqrt 2 \]
Answer
163.5k+ views
Hint: The Centripetal Force Formula is given as the product of mass which is in kg and the square of tangential velocity which is in metres per second divided by the radius which is in metres. It implies that on doubling the radius then the tangential velocity will be quadrupled. So that we can find the relation between the velocity and radius.
Formula used:
The centripetal force is given as;
\[F = \dfrac{{m{v^2}}}{r}\]
Where F is the Centripetal force, m is the mass of the object, v is the speed or velocity of the object and r is the radius.
Complete step by step solution:
Given two particles of constant masses(m) and centripetal force(F).
Ratio of the radius of curvature of two particles is, \[{r_1}:{r_2} = 1:2\]
As we know that centripetal force, \[F = \dfrac{{m{v^2}}}{r}\]
we can write this formula as, \[r = \dfrac{{m{v^2}}}{F}\]
Here mass m and force F are constant terms, so from this we get the relation between v and r as,
\[r \propto {v^2}\,{\rm{ or v}}\, \propto \sqrt r \]
Thus, by using the values, we get
\[\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{r_1}} }}{{\sqrt {{r_2}} }}\]
\[\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{r_1}}}{{{r_2}}}} \\
\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{2}} \\
\therefore \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{1}{{\sqrt 2 }}\]
Therefore, the ratio of the radius of curvature of the path of two particles is \[1:\sqrt 2 \].
Hence option C is the correct answer.
Note: A force is required to make an object move and also the force acts differently on objects depending on which type of motion it exhibits. Centripetal force is defined as the force which is acting on an object in curvilinear motion directed towards the axis of rotation or centre of curvature. The unit of centripetal force is Newton(N). The direction of centripetal force is perpendicular to the direction of the object displacement.
Formula used:
The centripetal force is given as;
\[F = \dfrac{{m{v^2}}}{r}\]
Where F is the Centripetal force, m is the mass of the object, v is the speed or velocity of the object and r is the radius.
Complete step by step solution:
Given two particles of constant masses(m) and centripetal force(F).
Ratio of the radius of curvature of two particles is, \[{r_1}:{r_2} = 1:2\]
As we know that centripetal force, \[F = \dfrac{{m{v^2}}}{r}\]
we can write this formula as, \[r = \dfrac{{m{v^2}}}{F}\]
Here mass m and force F are constant terms, so from this we get the relation between v and r as,
\[r \propto {v^2}\,{\rm{ or v}}\, \propto \sqrt r \]
Thus, by using the values, we get
\[\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{r_1}} }}{{\sqrt {{r_2}} }}\]
\[\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{r_1}}}{{{r_2}}}} \\
\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{2}} \\
\therefore \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{1}{{\sqrt 2 }}\]
Therefore, the ratio of the radius of curvature of the path of two particles is \[1:\sqrt 2 \].
Hence option C is the correct answer.
Note: A force is required to make an object move and also the force acts differently on objects depending on which type of motion it exhibits. Centripetal force is defined as the force which is acting on an object in curvilinear motion directed towards the axis of rotation or centre of curvature. The unit of centripetal force is Newton(N). The direction of centripetal force is perpendicular to the direction of the object displacement.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Class 11 JEE Main Physics Mock Test 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
