
If the momentum of an electron is changed by P, then the de-Broglie wavelength associated with it changes by 0.5%. The initial momentum of an electron will be:
A. 400 P
B. \[\dfrac{\text{P}}{200}\]
C. 100 P
D. 200 P
Answer
219.6k+ views
Hint: In this problem, we use the equation which was given by de-Broglie. He gave the relationship between the momentum of the particle, the Planck's constant and wavelength i.e. \[\lambda \text{ = }\dfrac{\text{h}}{\text{P}}\]. From here, we can calculate the value of initial momentum.
Complete step by step Answer:
- In the given question, we have to calculate the initial momentum of an electron from the given data.
- According to the de-Broglie, the wavelength of an object that is related to the momentum and mass of the object is known as de-Broglie wavelength.
- Now, as we know that the relationship is given by:
\[\lambda \text{ = }\dfrac{\text{h}}{\text{P}}\] or \[\text{P = }\dfrac{\text{h}}{\lambda }\] …. (1)
- Now, it is given that the final momentum of an electron is 0.5%, so we can write the equation (1) as
$\dfrac{\vartriangle \text{P}}{\text{P}}\ \text{= - }\dfrac{\vartriangle \lambda }{\lambda }$
- The negative sign signifies that the change in the momentum will be opposite to the change in the wavelength.
- So, here we have to the find the value of P which is initial momentum so by putting the value of wavelength we will get:
$\dfrac{\vartriangle \text{P}}{\text{P}}\ \text{= }\dfrac{0.5}{100}$
$\text{P = }\dfrac{100}{0.5}\vartriangle \text{P = 200}\vartriangle \text{P}$
- So, we can say that the initial momentum is equal to the 200 times of the final momentum.
Therefore, option D is the correct answer.
Note: According to de-Broglie the matter consists of dual nature that is particle and wave nature just like the light. We can study the properties of the matter waves of the very small objects. In de-Broglie wavelength, the momentum is defined as the product of the mass and velocity of the object.
Complete step by step Answer:
- In the given question, we have to calculate the initial momentum of an electron from the given data.
- According to the de-Broglie, the wavelength of an object that is related to the momentum and mass of the object is known as de-Broglie wavelength.
- Now, as we know that the relationship is given by:
\[\lambda \text{ = }\dfrac{\text{h}}{\text{P}}\] or \[\text{P = }\dfrac{\text{h}}{\lambda }\] …. (1)
- Now, it is given that the final momentum of an electron is 0.5%, so we can write the equation (1) as
$\dfrac{\vartriangle \text{P}}{\text{P}}\ \text{= - }\dfrac{\vartriangle \lambda }{\lambda }$
- The negative sign signifies that the change in the momentum will be opposite to the change in the wavelength.
- So, here we have to the find the value of P which is initial momentum so by putting the value of wavelength we will get:
$\dfrac{\vartriangle \text{P}}{\text{P}}\ \text{= }\dfrac{0.5}{100}$
$\text{P = }\dfrac{100}{0.5}\vartriangle \text{P = 200}\vartriangle \text{P}$
- So, we can say that the initial momentum is equal to the 200 times of the final momentum.
Therefore, option D is the correct answer.
Note: According to de-Broglie the matter consists of dual nature that is particle and wave nature just like the light. We can study the properties of the matter waves of the very small objects. In de-Broglie wavelength, the momentum is defined as the product of the mass and velocity of the object.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

