If \[\sqrt {{m^4}{n^4}} \times \sqrt[6]{{{m^2}{n^2}}} \times \sqrt[3]{{{m^2}{n^2}}} = {\left( {mn} \right)^k}\], then find the value of k?
(a) 6
(b) 3
(c) 2
(d) 1
Answer
Verified
115.8k+ views
Hint- First, We should convert the under root into its numerical value and try to bring in power of mn then add up all the power of mn which is equal to k.
Replacing the under-roots with their values, we get
$
{\left( {{m^4}{n^4}} \right)^{\dfrac{1}{2}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{6}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{3}}} = {\left( {mn} \right)^k} \\
\\
$
Now, using the properties of exponents
$
\Rightarrow {\left( {{m^4}{n^4}} \right)^{\dfrac{1}{2}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{6}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow \because {\left( {{a^x}} \right)^y} = {a^{xy}} \\
\Rightarrow {\left( {mn} \right)^{\dfrac{4}{2}}} \times {\left( {mn} \right)^{\dfrac{2}{6}}} \times {\left( {mn} \right)^{\dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow \because {a^x}{a^y} = {a^{x + y}} \\
\Rightarrow {\left( {mn} \right)^2} \times {\left( {mn} \right)^{\dfrac{1}{3}}} \times {\left( {mn} \right)^{\dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow {\left( {mn} \right)^{2 + \dfrac{1}{3} + \dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow {\left( {mn} \right)^3} = {\left( {mn} \right)^k} \\
\Rightarrow \therefore k = 3 \\
$
∴the correct option is B.
Note- In this question we used the property saying when the bases are same powers get added Some more properties of exponents other than the two used in the above questions:
1. \[{\left( {ab} \right)^m} = {a^{^m}}{b^m}\]
2. \[{a^{ - n}} = {a^{\dfrac{1}{n}}}\]
3. \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]
4. \[{\left( {\dfrac{a}{b}} \right)^{ - n}} = {\left( {\dfrac{b}{a}} \right)^n}\]
5. \[{a^0} = 1\]
Replacing the under-roots with their values, we get
$
{\left( {{m^4}{n^4}} \right)^{\dfrac{1}{2}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{6}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{3}}} = {\left( {mn} \right)^k} \\
\\
$
Now, using the properties of exponents
$
\Rightarrow {\left( {{m^4}{n^4}} \right)^{\dfrac{1}{2}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{6}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow \because {\left( {{a^x}} \right)^y} = {a^{xy}} \\
\Rightarrow {\left( {mn} \right)^{\dfrac{4}{2}}} \times {\left( {mn} \right)^{\dfrac{2}{6}}} \times {\left( {mn} \right)^{\dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow \because {a^x}{a^y} = {a^{x + y}} \\
\Rightarrow {\left( {mn} \right)^2} \times {\left( {mn} \right)^{\dfrac{1}{3}}} \times {\left( {mn} \right)^{\dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow {\left( {mn} \right)^{2 + \dfrac{1}{3} + \dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow {\left( {mn} \right)^3} = {\left( {mn} \right)^k} \\
\Rightarrow \therefore k = 3 \\
$
∴the correct option is B.
Note- In this question we used the property saying when the bases are same powers get added Some more properties of exponents other than the two used in the above questions:
1. \[{\left( {ab} \right)^m} = {a^{^m}}{b^m}\]
2. \[{a^{ - n}} = {a^{\dfrac{1}{n}}}\]
3. \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]
4. \[{\left( {\dfrac{a}{b}} \right)^{ - n}} = {\left( {\dfrac{b}{a}} \right)^n}\]
5. \[{a^0} = 1\]
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events
Difference Between Area and Volume
Centroid Formula - Explanation, Properties, and FAQs
Difference Between Percentage and Percentile: JEE Main 2024
Difference Between Work and Energy: JEE Main 2024
Difference Between Erosion and Corrosion: JEE Main 2024
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main 27 January 2024 Shift 1 Question Paper with Solutions
JEE Main Physics Question Paper with Answer Keys and Solutions
JEE Main Syllabus 2025 (Updated)
JEE Main Marks vs Rank 2025
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks
Other Pages
NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume
NCERT Solutions for Class 9 Maths Chapter 9 Circles
NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes Ex 11.3
NCERT Solutions for Class 9 Maths Chapter 12 Statistics
NCERT Solutions for Class 9 Maths Chapter 10 Heron'S Formula
NCERT Solutions for Class 9 Maths In Hindi Chapter 1 Number System