
If \[{p^{th}},{q^{th}},{r^{th}}\] and \[{s^{th}}\] terms of an A.P. be in G.P., then \[(p - q),(q - r),(r - s)\] will be in
A. G.P.
B. A.P.
C. H.P.
D. None of these
Answer
162.6k+ views
Hint:
We know that, \[{T_n} = a + \left( {n-1} \right)d\] is the nth term of an arithmetic progression (A.P) with first term 'a' and common difference- ’d’. The common difference can be positive, negative, or zero. And we can determine the nature of AP based on the value of the common difference d.
Complete step-by-step solution:
We have been given in the question, that
The \[{p^{th}},{q^{th}},{r^{th}}\] and \[{s^{th}}\] terms of an A.P. be in G.P
Let A be the first term D be the common difference of A.P.
We know that,
In terms of p-th term, we have
\[{a_p} = a + (p - 1)d\]
In terms of q-th term, we have
\[{a_q} = a + (q - 1)d\]
In terms of r-th term, we have
\[{a_r} = a + (r - 1)dn\]
In terms of s-th term, we have
\[{a_s} = a + (s - 1)dn\]
It is given that \[{a_p},{a_q},{a_r}\] and \[{a_s}\] is in Geometric progression.
Substitute all the values obtained from the above calculations, we obtain
Therefore, \[\frac{{{a_q}}}{{{a_p}}} = \frac{{{a_r}}}{{{a_q}}} = \frac{{{a_q} - {a_r}}}{{{a_p} - {a_q}}} = \frac{{q - r}}{{p - q}} \ldots \ldots \](1)
Now, we have to cancel the similar terms to simplify:
\[\frac{{{a_r}}}{{{a_q}}} = \frac{{{a_s}}}{{{a_r}}} = \frac{{{a_r} - {a_s}}}{{{a_q} - {a_r}}} = \frac{{r - s}}{{q - r}} \ldots \ldots \](2)
On simplifying, from equations (1) and (2), we get
\[\frac{{q - r}}{{p - q}} = \frac{{r - s}}{{q - r}}\]
Therefore, \[p - q,q - r\] and \[r - s\] are in Geometric progression.
Hence, the option A is correct.
Note:
The assumption that a common difference can never be negative or always positive is incorrect. So, student should determine whether the given terms have a mathematical formula to represent them; if so, it is a progression; otherwise, it is a sequence. However, a mathematical formula should be used to represent the given terms in progression. Identify the common difference between increasing and decreasing arithmetic progressions or determine whether a given sequence is increasing or decreasing.
We know that, \[{T_n} = a + \left( {n-1} \right)d\] is the nth term of an arithmetic progression (A.P) with first term 'a' and common difference- ’d’. The common difference can be positive, negative, or zero. And we can determine the nature of AP based on the value of the common difference d.
Complete step-by-step solution:
We have been given in the question, that
The \[{p^{th}},{q^{th}},{r^{th}}\] and \[{s^{th}}\] terms of an A.P. be in G.P
Let A be the first term D be the common difference of A.P.
We know that,
In terms of p-th term, we have
\[{a_p} = a + (p - 1)d\]
In terms of q-th term, we have
\[{a_q} = a + (q - 1)d\]
In terms of r-th term, we have
\[{a_r} = a + (r - 1)dn\]
In terms of s-th term, we have
\[{a_s} = a + (s - 1)dn\]
It is given that \[{a_p},{a_q},{a_r}\] and \[{a_s}\] is in Geometric progression.
Substitute all the values obtained from the above calculations, we obtain
Therefore, \[\frac{{{a_q}}}{{{a_p}}} = \frac{{{a_r}}}{{{a_q}}} = \frac{{{a_q} - {a_r}}}{{{a_p} - {a_q}}} = \frac{{q - r}}{{p - q}} \ldots \ldots \](1)
Now, we have to cancel the similar terms to simplify:
\[\frac{{{a_r}}}{{{a_q}}} = \frac{{{a_s}}}{{{a_r}}} = \frac{{{a_r} - {a_s}}}{{{a_q} - {a_r}}} = \frac{{r - s}}{{q - r}} \ldots \ldots \](2)
On simplifying, from equations (1) and (2), we get
\[\frac{{q - r}}{{p - q}} = \frac{{r - s}}{{q - r}}\]
Therefore, \[p - q,q - r\] and \[r - s\] are in Geometric progression.
Hence, the option A is correct.
Note:
The assumption that a common difference can never be negative or always positive is incorrect. So, student should determine whether the given terms have a mathematical formula to represent them; if so, it is a progression; otherwise, it is a sequence. However, a mathematical formula should be used to represent the given terms in progression. Identify the common difference between increasing and decreasing arithmetic progressions or determine whether a given sequence is increasing or decreasing.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
