
If $P = (1,0)$, $Q = ( - 1,0)$, $R = (2,0)$ are 3 given point, then the locus of point S satisfying the relationship $S{Q^2} + S{R^2} = 2S{P^2}$ is
a. A straight line parallel to x-axis
b. Circle through the origin
c. Circle with center through the origin
d. A straight line parallel to y-axis
Answer
137.7k+ views
Hint: Here, we need to find the locus of point S satisfying the given equation $S{Q^2} + S{R^2} = 2S{P^2}$ and we need to state the relation whether it is a straight line or circle.
Complete step-by-step answer:
We need to find the locus of the points S satisfying the relation $S{Q^2} + S{R^2} = 2S{P^2} \to (1)$
Let point S have coordinates $(x,y)$. Coordinates of P is $(1,0)$, Q is $( - 1,0)$ and R is $(2,0)$.
Now using the distance formulae $SP = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $ and $SQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $ and $SR = \sqrt {{{(x - 2)}^2} + {{(y - 0)}^2}} $.
Substituting the above in equation (1)
We have
${(x + 1)^2} + {(y - 0)^2} + {(x - 2)^2} + {(y - 0)^2} = 2({(x - 1)^2} + {(y - 0)^2})$
Simplifying if we get using ${(a + b)^2} = {a^2} + 2ab + {b^2}$ and ${(a - b)^2} = {a^2} - 2ab + {b^2}$
\[{x^2} + 2x + 1 + {y^2} + {x^2} - 4x + 4 + {y^2} = 2({x^2} - 2x + 1 + {y^2})\]
Simplifying further,
\[{x^2} + 2x + 1 + {y^2} + {x^2} - 4x + 4 + {y^2} = 2{x^2} - 4x + 2 + 2{y^2}\]
On solving, we get,
$
2x + 3 = 0 \\
{\text{or x = }}\dfrac{{ - 3}}{2} \\
$
Clearly $x = \dfrac{{ - 3}}{2}$ is a straight line in the second & third quadrants which is parallel to y axis hence (d) is the right option.
Note: Locus refers to the family of curves, so whenever we need to find the locus that is a family of curves satisfying a specific equation then simply solve and simplify to obtain the final relation between x and y to obtain locus.
Complete step-by-step answer:
We need to find the locus of the points S satisfying the relation $S{Q^2} + S{R^2} = 2S{P^2} \to (1)$
Let point S have coordinates $(x,y)$. Coordinates of P is $(1,0)$, Q is $( - 1,0)$ and R is $(2,0)$.
Now using the distance formulae $SP = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $ and $SQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $ and $SR = \sqrt {{{(x - 2)}^2} + {{(y - 0)}^2}} $.
Substituting the above in equation (1)
We have
${(x + 1)^2} + {(y - 0)^2} + {(x - 2)^2} + {(y - 0)^2} = 2({(x - 1)^2} + {(y - 0)^2})$
Simplifying if we get using ${(a + b)^2} = {a^2} + 2ab + {b^2}$ and ${(a - b)^2} = {a^2} - 2ab + {b^2}$
\[{x^2} + 2x + 1 + {y^2} + {x^2} - 4x + 4 + {y^2} = 2({x^2} - 2x + 1 + {y^2})\]
Simplifying further,
\[{x^2} + 2x + 1 + {y^2} + {x^2} - 4x + 4 + {y^2} = 2{x^2} - 4x + 2 + 2{y^2}\]
On solving, we get,
$
2x + 3 = 0 \\
{\text{or x = }}\dfrac{{ - 3}}{2} \\
$
Clearly $x = \dfrac{{ - 3}}{2}$ is a straight line in the second & third quadrants which is parallel to y axis hence (d) is the right option.
Note: Locus refers to the family of curves, so whenever we need to find the locus that is a family of curves satisfying a specific equation then simply solve and simplify to obtain the final relation between x and y to obtain locus.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Other Pages
Formula for Mean Deviation For Ungrouped Data

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
