
If $P = (1,0)$, $Q = ( - 1,0)$, $R = (2,0)$ are 3 given point, then the locus of point S satisfying the relationship $S{Q^2} + S{R^2} = 2S{P^2}$ is
a. A straight line parallel to x-axis
b. Circle through the origin
c. Circle with center through the origin
d. A straight line parallel to y-axis
Answer
216k+ views
Hint: Here, we need to find the locus of point S satisfying the given equation $S{Q^2} + S{R^2} = 2S{P^2}$ and we need to state the relation whether it is a straight line or circle.
Complete step-by-step answer:
We need to find the locus of the points S satisfying the relation $S{Q^2} + S{R^2} = 2S{P^2} \to (1)$
Let point S have coordinates $(x,y)$. Coordinates of P is $(1,0)$, Q is $( - 1,0)$ and R is $(2,0)$.
Now using the distance formulae $SP = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $ and $SQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $ and $SR = \sqrt {{{(x - 2)}^2} + {{(y - 0)}^2}} $.
Substituting the above in equation (1)
We have
${(x + 1)^2} + {(y - 0)^2} + {(x - 2)^2} + {(y - 0)^2} = 2({(x - 1)^2} + {(y - 0)^2})$
Simplifying if we get using ${(a + b)^2} = {a^2} + 2ab + {b^2}$ and ${(a - b)^2} = {a^2} - 2ab + {b^2}$
\[{x^2} + 2x + 1 + {y^2} + {x^2} - 4x + 4 + {y^2} = 2({x^2} - 2x + 1 + {y^2})\]
Simplifying further,
\[{x^2} + 2x + 1 + {y^2} + {x^2} - 4x + 4 + {y^2} = 2{x^2} - 4x + 2 + 2{y^2}\]
On solving, we get,
$
2x + 3 = 0 \\
{\text{or x = }}\dfrac{{ - 3}}{2} \\
$
Clearly $x = \dfrac{{ - 3}}{2}$ is a straight line in the second & third quadrants which is parallel to y axis hence (d) is the right option.
Note: Locus refers to the family of curves, so whenever we need to find the locus that is a family of curves satisfying a specific equation then simply solve and simplify to obtain the final relation between x and y to obtain locus.
Complete step-by-step answer:
We need to find the locus of the points S satisfying the relation $S{Q^2} + S{R^2} = 2S{P^2} \to (1)$
Let point S have coordinates $(x,y)$. Coordinates of P is $(1,0)$, Q is $( - 1,0)$ and R is $(2,0)$.
Now using the distance formulae $SP = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $ and $SQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $ and $SR = \sqrt {{{(x - 2)}^2} + {{(y - 0)}^2}} $.
Substituting the above in equation (1)
We have
${(x + 1)^2} + {(y - 0)^2} + {(x - 2)^2} + {(y - 0)^2} = 2({(x - 1)^2} + {(y - 0)^2})$
Simplifying if we get using ${(a + b)^2} = {a^2} + 2ab + {b^2}$ and ${(a - b)^2} = {a^2} - 2ab + {b^2}$
\[{x^2} + 2x + 1 + {y^2} + {x^2} - 4x + 4 + {y^2} = 2({x^2} - 2x + 1 + {y^2})\]
Simplifying further,
\[{x^2} + 2x + 1 + {y^2} + {x^2} - 4x + 4 + {y^2} = 2{x^2} - 4x + 2 + 2{y^2}\]
On solving, we get,
$
2x + 3 = 0 \\
{\text{or x = }}\dfrac{{ - 3}}{2} \\
$
Clearly $x = \dfrac{{ - 3}}{2}$ is a straight line in the second & third quadrants which is parallel to y axis hence (d) is the right option.
Note: Locus refers to the family of curves, so whenever we need to find the locus that is a family of curves satisfying a specific equation then simply solve and simplify to obtain the final relation between x and y to obtain locus.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

