
If $\left[ {\dfrac{{\left( {2\sin\alpha } \right)}}{{\left( {1 + \cos\alpha + \sin\alpha } \right)}}} \right] = x$ , then what is the value of $\left[ {\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}}} \right]$?
A. $\dfrac{1}{x}$
B. $x$
C. $1 - x$
D. $1 + x$
Answer
161.1k+ views
Hint: Simplify the given equation by using the trigonometric identities of $\sin 2A$, and $2\cos^{2}A$. After that, use the trigonometric identities $2\sin^{2}A$, and $\cos^{2}A + \sin^{2}A = 1$ to rewrite the required expression. In the end, simplify the new expression and get the required answer.
Formula Used:
$\sin2A = 2\sin A \cos A$
$2\cos^{2}A = 1 + \cos2A$
$2\sin^{2}A = 1 - \cos2A$
$\cos^{2}A + \sin^{2}A = 1$
Complete step by step solution:
The given equation is $\left[ {\dfrac{{\left( {2\sin\alpha } \right)}}{{\left( {1 + \cos\alpha + \sin\alpha } \right)}}} \right] = x$.
Let’s simplify the above equation by using the trigonometric identities $\sin2A = 2\sin A \cos A$ and $2\cos^{2}A = 1 + \cos 2A$.
$\dfrac{2\left(\:2\sin \dfrac{\alpha \:}{2}\cos \dfrac{\alpha \:}{2}\:\right)}{2\cos ^2\dfrac{\alpha \:}{2}\:+\:2\sin \dfrac{\alpha \:}{2}\cos \dfrac{\alpha \:}{2}}\:=\:x$
$ \Rightarrow \dfrac{{4\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}}}{{2\cos\dfrac{\alpha }{2}\left( {\cos\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}} \right)}} = x$
Cancel out the common factor.
$\dfrac{{2\sin\dfrac{\alpha }{2}}}{{\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}}} = x$ $.....\left( 1 \right)$
Now consider the given expression $\left[ {\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}}} \right]$.
Rewrite the expression by using the trigonometric identities $2\sin^{2}A = 1 - \cos2A$, and $\cos^{2}A +\sin^{2}A = 1$.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{\left( {2\sin^{2}\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}} \right)}}{{\left( {\cos^{2}\dfrac{\alpha }{2} + \sin^{2}\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}} \right)}}$
Simplify the right-hand side.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}\left( {\sin\dfrac{\alpha }{2} + \cos\dfrac{\alpha }{2}} \right)}}{{{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}^2}}}$
Cancel out the common factors.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}}}{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}}$
Now compare the above equation with the equation $\left( 1 \right)$.
We get,
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}}}{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}} = x$
$ \Rightarrow \dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = x$
Option ‘C’ is correct
Note: Do not get confused while using the general trigonometric identities for the half-angle or for the multiple of an angle. To write the identities properly, check the proportions of the angles in the general trigonometric identities.
Formula Used:
$\sin2A = 2\sin A \cos A$
$2\cos^{2}A = 1 + \cos2A$
$2\sin^{2}A = 1 - \cos2A$
$\cos^{2}A + \sin^{2}A = 1$
Complete step by step solution:
The given equation is $\left[ {\dfrac{{\left( {2\sin\alpha } \right)}}{{\left( {1 + \cos\alpha + \sin\alpha } \right)}}} \right] = x$.
Let’s simplify the above equation by using the trigonometric identities $\sin2A = 2\sin A \cos A$ and $2\cos^{2}A = 1 + \cos 2A$.
$\dfrac{2\left(\:2\sin \dfrac{\alpha \:}{2}\cos \dfrac{\alpha \:}{2}\:\right)}{2\cos ^2\dfrac{\alpha \:}{2}\:+\:2\sin \dfrac{\alpha \:}{2}\cos \dfrac{\alpha \:}{2}}\:=\:x$
$ \Rightarrow \dfrac{{4\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}}}{{2\cos\dfrac{\alpha }{2}\left( {\cos\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}} \right)}} = x$
Cancel out the common factor.
$\dfrac{{2\sin\dfrac{\alpha }{2}}}{{\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}}} = x$ $.....\left( 1 \right)$
Now consider the given expression $\left[ {\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}}} \right]$.
Rewrite the expression by using the trigonometric identities $2\sin^{2}A = 1 - \cos2A$, and $\cos^{2}A +\sin^{2}A = 1$.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{\left( {2\sin^{2}\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}} \right)}}{{\left( {\cos^{2}\dfrac{\alpha }{2} + \sin^{2}\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}} \right)}}$
Simplify the right-hand side.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}\left( {\sin\dfrac{\alpha }{2} + \cos\dfrac{\alpha }{2}} \right)}}{{{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}^2}}}$
Cancel out the common factors.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}}}{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}}$
Now compare the above equation with the equation $\left( 1 \right)$.
We get,
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}}}{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}} = x$
$ \Rightarrow \dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = x$
Option ‘C’ is correct
Note: Do not get confused while using the general trigonometric identities for the half-angle or for the multiple of an angle. To write the identities properly, check the proportions of the angles in the general trigonometric identities.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Trending doubts
JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

JEE Main B.Arch Cut Off Percentile 2025

JoSAA Counselling 2025: Registration Dates OUT, Eligibility Criteria, Cutoffs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

List of Fastest Century in IPL History

NEET 2025 – Every New Update You Need to Know
