
If $\left[ {\dfrac{{\left( {2\sin\alpha } \right)}}{{\left( {1 + \cos\alpha + \sin\alpha } \right)}}} \right] = x$ , then what is the value of $\left[ {\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}}} \right]$?
A. $\dfrac{1}{x}$
B. $x$
C. $1 - x$
D. $1 + x$
Answer
232.8k+ views
Hint: Simplify the given equation by using the trigonometric identities of $\sin 2A$, and $2\cos^{2}A$. After that, use the trigonometric identities $2\sin^{2}A$, and $\cos^{2}A + \sin^{2}A = 1$ to rewrite the required expression. In the end, simplify the new expression and get the required answer.
Formula Used:
$\sin2A = 2\sin A \cos A$
$2\cos^{2}A = 1 + \cos2A$
$2\sin^{2}A = 1 - \cos2A$
$\cos^{2}A + \sin^{2}A = 1$
Complete step by step solution:
The given equation is $\left[ {\dfrac{{\left( {2\sin\alpha } \right)}}{{\left( {1 + \cos\alpha + \sin\alpha } \right)}}} \right] = x$.
Let’s simplify the above equation by using the trigonometric identities $\sin2A = 2\sin A \cos A$ and $2\cos^{2}A = 1 + \cos 2A$.
$\dfrac{2\left(\:2\sin \dfrac{\alpha \:}{2}\cos \dfrac{\alpha \:}{2}\:\right)}{2\cos ^2\dfrac{\alpha \:}{2}\:+\:2\sin \dfrac{\alpha \:}{2}\cos \dfrac{\alpha \:}{2}}\:=\:x$
$ \Rightarrow \dfrac{{4\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}}}{{2\cos\dfrac{\alpha }{2}\left( {\cos\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}} \right)}} = x$
Cancel out the common factor.
$\dfrac{{2\sin\dfrac{\alpha }{2}}}{{\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}}} = x$ $.....\left( 1 \right)$
Now consider the given expression $\left[ {\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}}} \right]$.
Rewrite the expression by using the trigonometric identities $2\sin^{2}A = 1 - \cos2A$, and $\cos^{2}A +\sin^{2}A = 1$.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{\left( {2\sin^{2}\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}} \right)}}{{\left( {\cos^{2}\dfrac{\alpha }{2} + \sin^{2}\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}} \right)}}$
Simplify the right-hand side.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}\left( {\sin\dfrac{\alpha }{2} + \cos\dfrac{\alpha }{2}} \right)}}{{{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}^2}}}$
Cancel out the common factors.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}}}{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}}$
Now compare the above equation with the equation $\left( 1 \right)$.
We get,
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}}}{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}} = x$
$ \Rightarrow \dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = x$
Option ‘C’ is correct
Note: Do not get confused while using the general trigonometric identities for the half-angle or for the multiple of an angle. To write the identities properly, check the proportions of the angles in the general trigonometric identities.
Formula Used:
$\sin2A = 2\sin A \cos A$
$2\cos^{2}A = 1 + \cos2A$
$2\sin^{2}A = 1 - \cos2A$
$\cos^{2}A + \sin^{2}A = 1$
Complete step by step solution:
The given equation is $\left[ {\dfrac{{\left( {2\sin\alpha } \right)}}{{\left( {1 + \cos\alpha + \sin\alpha } \right)}}} \right] = x$.
Let’s simplify the above equation by using the trigonometric identities $\sin2A = 2\sin A \cos A$ and $2\cos^{2}A = 1 + \cos 2A$.
$\dfrac{2\left(\:2\sin \dfrac{\alpha \:}{2}\cos \dfrac{\alpha \:}{2}\:\right)}{2\cos ^2\dfrac{\alpha \:}{2}\:+\:2\sin \dfrac{\alpha \:}{2}\cos \dfrac{\alpha \:}{2}}\:=\:x$
$ \Rightarrow \dfrac{{4\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}}}{{2\cos\dfrac{\alpha }{2}\left( {\cos\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}} \right)}} = x$
Cancel out the common factor.
$\dfrac{{2\sin\dfrac{\alpha }{2}}}{{\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}}} = x$ $.....\left( 1 \right)$
Now consider the given expression $\left[ {\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}}} \right]$.
Rewrite the expression by using the trigonometric identities $2\sin^{2}A = 1 - \cos2A$, and $\cos^{2}A +\sin^{2}A = 1$.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{\left( {2\sin^{2}\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}} \right)}}{{\left( {\cos^{2}\dfrac{\alpha }{2} + \sin^{2}\dfrac{\alpha }{2} + 2\sin\dfrac{\alpha }{2}\cos\dfrac{\alpha }{2}} \right)}}$
Simplify the right-hand side.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}\left( {\sin\dfrac{\alpha }{2} + \cos\dfrac{\alpha }{2}} \right)}}{{{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}^2}}}$
Cancel out the common factors.
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}}}{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}}$
Now compare the above equation with the equation $\left( 1 \right)$.
We get,
$\dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = \dfrac{{2\sin\dfrac{\alpha }{2}}}{{\left( {\cos\dfrac{\alpha }{2} + \sin\dfrac{\alpha }{2}} \right)}} = x$
$ \Rightarrow \dfrac{{\left( {1 - \cos\alpha + \sin\alpha } \right)}}{{\left( {1 + \sin\alpha } \right)}} = x$
Option ‘C’ is correct
Note: Do not get confused while using the general trigonometric identities for the half-angle or for the multiple of an angle. To write the identities properly, check the proportions of the angles in the general trigonometric identities.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

