
If in a triangle \[{\rm{ABC}}\] side \[a = (\sqrt 3 + 1){\rm{cm}}\] and \[\angle B = {30^\circ }\],\[\angle C = {45^\circ }\] then the area of the triangle is
A. \[\frac{{\sqrt 3 + 1}}{3}\;{\rm{c}}{{\rm{m}}^2}\]
B. \[\frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
C. \[\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\;{\rm{c}}{{\rm{m}}^2}\]
D. \[\frac{{\sqrt 3 + 1}}{{3\sqrt 2 }}\;{\rm{c}}{{\rm{m}}^2}\]
Answer
163.8k+ views
Hint:
In this case, we have been given that in a triangle ABC, the side is \[a = (\sqrt 3 + 1){\rm{cm}}\] and two angles \[\angle B = {30^\circ }\],\[\angle C = {45^\circ }\]and here we see that one of the angles is \[\angle C = {45^\circ }\]and the other is \[\angle B = {30^\circ }\]then it may be isosceles triangle. We know that all angle’s sum is \[{180^\circ }\] in a triangle. So that we have to apply sine rule and also to use area of triangle formula in order to get the required result.
Formula used:
Sine rule:
\[\frac{{\rm{a}}}{{\sin {\rm{A}}}} = \frac{{\rm{b}}}{{\sin {\rm{B}}}} = \frac{{\rm{c}}}{{\sin {\rm{C}}}}\]
Triangle’s area:
\[\frac{1}{2}{\rm{ab}}\sin {\rm{C}}\]
Complete step-by-step solution:
We have been provided in the question that in a triangle \[ABC\] we have
\[a = (\sqrt 3 + 1);\angle B = {30^\circ },\angle C = {45^\circ }\]
As we know by sum of angle property that triangle’s sum of angle is \[{180^0}\] we can write as
\[ \Rightarrow \angle {\rm{A}} = {180^\circ } - {75^\circ } = {105^\circ }\]
Now, we have to use sine rule
\[\frac{{\rm{a}}}{{\sin {\rm{A}}}} = \frac{{\rm{b}}}{{\sin {\rm{B}}}} = \frac{{\rm{c}}}{{\sin {\rm{C}}}}\]
Now, we have to substitute the values provided in the data to the above equation, we get
\[ \Rightarrow \frac{{\sqrt 3 + 1}}{{\sin {{105}^\circ }}} = \frac{{\rm{b}}}{{\sin {{30}^\circ }}} = \frac{{\rm{c}}}{{\sin {{45}^\circ }}}\]
From the above expression, we have to determine the value of \[{\rm{b}}\] we obtain
\[ \Rightarrow {\rm{b}} = \frac{{(\sqrt 3 + 1)\sin {{30}^\circ }}}{{\sin {{105}^\circ }}}\]
Now, let’s solve numerator and denominator by using trigonometry identity, we get
\[ \frac{{(\sqrt 3 + 1)}}{{2\sin \left( {{{45}^\circ } + {{60}^\circ }} \right)}}\]
On further simplification using trigonometry identity, we obtain
\[ = \sqrt 2 \]
We have been already known that the area of triangle is \[\frac{1}{2}{\rm{ab}}\sin {\rm{C}}\]
By using the above formula we have ti substitute the values obtain previously we get
\[ = \frac{1}{2}(\sqrt 3 + 1)(\sqrt 2 )\frac{1}{{\sqrt 2 }}\]
Now, we have to simplify further we obtain
\[ = \frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
Therefore, if in a triangle \[{\rm{ABC}}\] side \[a = (\sqrt 3 + 1){\rm{cm}}\] and \[\angle B = {30^\circ },\angle C = {45^\circ }\] then the area of the triangle is \[\frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
Hence, the option B is correct
Note:
It is important to remember that the sum of all the angles must equal 180. Also, keep in mind that the length of a triangle's sides is a positive number. To relate the length and angles of a triangle, the sine and cosine formulas must be used.
In this case, we have been given that in a triangle ABC, the side is \[a = (\sqrt 3 + 1){\rm{cm}}\] and two angles \[\angle B = {30^\circ }\],\[\angle C = {45^\circ }\]and here we see that one of the angles is \[\angle C = {45^\circ }\]and the other is \[\angle B = {30^\circ }\]then it may be isosceles triangle. We know that all angle’s sum is \[{180^\circ }\] in a triangle. So that we have to apply sine rule and also to use area of triangle formula in order to get the required result.
Formula used:
Sine rule:
\[\frac{{\rm{a}}}{{\sin {\rm{A}}}} = \frac{{\rm{b}}}{{\sin {\rm{B}}}} = \frac{{\rm{c}}}{{\sin {\rm{C}}}}\]
Triangle’s area:
\[\frac{1}{2}{\rm{ab}}\sin {\rm{C}}\]
Complete step-by-step solution:
We have been provided in the question that in a triangle \[ABC\] we have
\[a = (\sqrt 3 + 1);\angle B = {30^\circ },\angle C = {45^\circ }\]
As we know by sum of angle property that triangle’s sum of angle is \[{180^0}\] we can write as
\[ \Rightarrow \angle {\rm{A}} = {180^\circ } - {75^\circ } = {105^\circ }\]
Now, we have to use sine rule
\[\frac{{\rm{a}}}{{\sin {\rm{A}}}} = \frac{{\rm{b}}}{{\sin {\rm{B}}}} = \frac{{\rm{c}}}{{\sin {\rm{C}}}}\]
Now, we have to substitute the values provided in the data to the above equation, we get
\[ \Rightarrow \frac{{\sqrt 3 + 1}}{{\sin {{105}^\circ }}} = \frac{{\rm{b}}}{{\sin {{30}^\circ }}} = \frac{{\rm{c}}}{{\sin {{45}^\circ }}}\]
From the above expression, we have to determine the value of \[{\rm{b}}\] we obtain
\[ \Rightarrow {\rm{b}} = \frac{{(\sqrt 3 + 1)\sin {{30}^\circ }}}{{\sin {{105}^\circ }}}\]
Now, let’s solve numerator and denominator by using trigonometry identity, we get
\[ \frac{{(\sqrt 3 + 1)}}{{2\sin \left( {{{45}^\circ } + {{60}^\circ }} \right)}}\]
On further simplification using trigonometry identity, we obtain
\[ = \sqrt 2 \]
We have been already known that the area of triangle is \[\frac{1}{2}{\rm{ab}}\sin {\rm{C}}\]
By using the above formula we have ti substitute the values obtain previously we get
\[ = \frac{1}{2}(\sqrt 3 + 1)(\sqrt 2 )\frac{1}{{\sqrt 2 }}\]
Now, we have to simplify further we obtain
\[ = \frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
Therefore, if in a triangle \[{\rm{ABC}}\] side \[a = (\sqrt 3 + 1){\rm{cm}}\] and \[\angle B = {30^\circ },\angle C = {45^\circ }\] then the area of the triangle is \[\frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
Hence, the option B is correct
Note:
It is important to remember that the sum of all the angles must equal 180. Also, keep in mind that the length of a triangle's sides is a positive number. To relate the length and angles of a triangle, the sine and cosine formulas must be used.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
