
If $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP, then find the value $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$.
A. $\dfrac{{4{b^2} - 3ac}}{{abc}}$
B. $\dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
C. $\dfrac{4}{{ac}} - \dfrac{5}{{{b^2}}}$
D. $\dfrac{{4{b^2} + 3ac}}{{a{b^2}c}}$
Answer
163.8k+ views
Hint: First we will apply the condition of AP to the series $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$. From the condition, we will find the value of $\dfrac{1}{a}$. Then substitute the value of $\dfrac{1}{a}$ and $\dfrac{1}{c}$ in the given expression and simplify the expression to get the desired result.
Formula Used:
If $a,b,c$ are in AP, then $b - a = c - b$.
Complete step by step solution:
Given that, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP.
Now apply the condition of AP.
$\dfrac{1}{b} - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{1}{b}$
Now subtract $\dfrac{1}{b}$ from both sides.
$ \Rightarrow \dfrac{1}{b} - \dfrac{1}{a} - \dfrac{1}{b} = \dfrac{1}{c} - \dfrac{1}{b} - \dfrac{1}{b}$
$ \Rightarrow - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b}$
Multiply -1 both sides of the equation.
$ \Rightarrow \dfrac{1}{a} = \dfrac{2}{b} - \dfrac{1}{c}$
$ \Rightarrow \dfrac{2}{b} - \dfrac{1}{a} = \dfrac{1}{c}$
Now substitute the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
$\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \left( {\dfrac{2}{b} - \dfrac{1}{a}} \right)} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \left( {\dfrac{2}{b} - \dfrac{1}{c}} \right)} \right)$
Now add or subtract all like terms.
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{2}{b} + \dfrac{1}{a}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{2}{b} + \dfrac{1}{c}} \right)$
$\Rightarrow \left( {\dfrac{2}{a} - \dfrac{1}{b}} \right)\left( {\dfrac{2}{c} - \dfrac{1}{b}} \right)$
Multiply in both terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}} + \dfrac{1}{{{b^2}}}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}}$
Now take common $ - \dfrac{2}{b}$ from the last two terms
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{2}{b}} \right)$ Since $ - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b} \Rightarrow \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{4}{{{b^2}}}$
Subtract like terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
Option ‘B’ is correct
Note: To calculate the value of the given expression, we should put the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
Formula Used:
If $a,b,c$ are in AP, then $b - a = c - b$.
Complete step by step solution:
Given that, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP.
Now apply the condition of AP.
$\dfrac{1}{b} - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{1}{b}$
Now subtract $\dfrac{1}{b}$ from both sides.
$ \Rightarrow \dfrac{1}{b} - \dfrac{1}{a} - \dfrac{1}{b} = \dfrac{1}{c} - \dfrac{1}{b} - \dfrac{1}{b}$
$ \Rightarrow - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b}$
Multiply -1 both sides of the equation.
$ \Rightarrow \dfrac{1}{a} = \dfrac{2}{b} - \dfrac{1}{c}$
$ \Rightarrow \dfrac{2}{b} - \dfrac{1}{a} = \dfrac{1}{c}$
Now substitute the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
$\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \left( {\dfrac{2}{b} - \dfrac{1}{a}} \right)} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \left( {\dfrac{2}{b} - \dfrac{1}{c}} \right)} \right)$
Now add or subtract all like terms.
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{2}{b} + \dfrac{1}{a}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{2}{b} + \dfrac{1}{c}} \right)$
$\Rightarrow \left( {\dfrac{2}{a} - \dfrac{1}{b}} \right)\left( {\dfrac{2}{c} - \dfrac{1}{b}} \right)$
Multiply in both terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}} + \dfrac{1}{{{b^2}}}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}}$
Now take common $ - \dfrac{2}{b}$ from the last two terms
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{2}{b}} \right)$ Since $ - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b} \Rightarrow \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{4}{{{b^2}}}$
Subtract like terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
Option ‘B’ is correct
Note: To calculate the value of the given expression, we should put the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
Recently Updated Pages
Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Difference Between Pound and Kilogram with Definitions, Relation

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
