
If $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP, then find the value $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$.
A. $\dfrac{{4{b^2} - 3ac}}{{abc}}$
B. $\dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
C. $\dfrac{4}{{ac}} - \dfrac{5}{{{b^2}}}$
D. $\dfrac{{4{b^2} + 3ac}}{{a{b^2}c}}$
Answer
216k+ views
Hint: First we will apply the condition of AP to the series $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$. From the condition, we will find the value of $\dfrac{1}{a}$. Then substitute the value of $\dfrac{1}{a}$ and $\dfrac{1}{c}$ in the given expression and simplify the expression to get the desired result.
Formula Used:
If $a,b,c$ are in AP, then $b - a = c - b$.
Complete step by step solution:
Given that, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP.
Now apply the condition of AP.
$\dfrac{1}{b} - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{1}{b}$
Now subtract $\dfrac{1}{b}$ from both sides.
$ \Rightarrow \dfrac{1}{b} - \dfrac{1}{a} - \dfrac{1}{b} = \dfrac{1}{c} - \dfrac{1}{b} - \dfrac{1}{b}$
$ \Rightarrow - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b}$
Multiply -1 both sides of the equation.
$ \Rightarrow \dfrac{1}{a} = \dfrac{2}{b} - \dfrac{1}{c}$
$ \Rightarrow \dfrac{2}{b} - \dfrac{1}{a} = \dfrac{1}{c}$
Now substitute the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
$\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \left( {\dfrac{2}{b} - \dfrac{1}{a}} \right)} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \left( {\dfrac{2}{b} - \dfrac{1}{c}} \right)} \right)$
Now add or subtract all like terms.
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{2}{b} + \dfrac{1}{a}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{2}{b} + \dfrac{1}{c}} \right)$
$\Rightarrow \left( {\dfrac{2}{a} - \dfrac{1}{b}} \right)\left( {\dfrac{2}{c} - \dfrac{1}{b}} \right)$
Multiply in both terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}} + \dfrac{1}{{{b^2}}}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}}$
Now take common $ - \dfrac{2}{b}$ from the last two terms
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{2}{b}} \right)$ Since $ - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b} \Rightarrow \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{4}{{{b^2}}}$
Subtract like terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
Option ‘B’ is correct
Note: To calculate the value of the given expression, we should put the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
Formula Used:
If $a,b,c$ are in AP, then $b - a = c - b$.
Complete step by step solution:
Given that, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP.
Now apply the condition of AP.
$\dfrac{1}{b} - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{1}{b}$
Now subtract $\dfrac{1}{b}$ from both sides.
$ \Rightarrow \dfrac{1}{b} - \dfrac{1}{a} - \dfrac{1}{b} = \dfrac{1}{c} - \dfrac{1}{b} - \dfrac{1}{b}$
$ \Rightarrow - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b}$
Multiply -1 both sides of the equation.
$ \Rightarrow \dfrac{1}{a} = \dfrac{2}{b} - \dfrac{1}{c}$
$ \Rightarrow \dfrac{2}{b} - \dfrac{1}{a} = \dfrac{1}{c}$
Now substitute the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
$\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \left( {\dfrac{2}{b} - \dfrac{1}{a}} \right)} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \left( {\dfrac{2}{b} - \dfrac{1}{c}} \right)} \right)$
Now add or subtract all like terms.
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{2}{b} + \dfrac{1}{a}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{2}{b} + \dfrac{1}{c}} \right)$
$\Rightarrow \left( {\dfrac{2}{a} - \dfrac{1}{b}} \right)\left( {\dfrac{2}{c} - \dfrac{1}{b}} \right)$
Multiply in both terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}} + \dfrac{1}{{{b^2}}}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}}$
Now take common $ - \dfrac{2}{b}$ from the last two terms
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{2}{b}} \right)$ Since $ - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b} \Rightarrow \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{4}{{{b^2}}}$
Subtract like terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
Option ‘B’ is correct
Note: To calculate the value of the given expression, we should put the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
Recently Updated Pages
JEE Main 2024 (January 24 Shift 1) Question Paper with Solutions [PDF]

Progressive Wave: Meaning, Types & Examples Explained

Temperature Dependence of Resistivity Explained

JEE Main 2024 (January 25 Shift 1) Physics Question Paper with Solutions [PDF]

Difference Between Vectors and Scalars: JEE Main 2026

Salt Hydrolysis IIT JEE | Aсіdіtу and Alkаlіnіtу of Sаlt Sоlutіоns JEE Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

