
If $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP, then find the value $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$.
A. $\dfrac{{4{b^2} - 3ac}}{{abc}}$
B. $\dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
C. $\dfrac{4}{{ac}} - \dfrac{5}{{{b^2}}}$
D. $\dfrac{{4{b^2} + 3ac}}{{a{b^2}c}}$
Answer
232.8k+ views
Hint: First we will apply the condition of AP to the series $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$. From the condition, we will find the value of $\dfrac{1}{a}$. Then substitute the value of $\dfrac{1}{a}$ and $\dfrac{1}{c}$ in the given expression and simplify the expression to get the desired result.
Formula Used:
If $a,b,c$ are in AP, then $b - a = c - b$.
Complete step by step solution:
Given that, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP.
Now apply the condition of AP.
$\dfrac{1}{b} - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{1}{b}$
Now subtract $\dfrac{1}{b}$ from both sides.
$ \Rightarrow \dfrac{1}{b} - \dfrac{1}{a} - \dfrac{1}{b} = \dfrac{1}{c} - \dfrac{1}{b} - \dfrac{1}{b}$
$ \Rightarrow - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b}$
Multiply -1 both sides of the equation.
$ \Rightarrow \dfrac{1}{a} = \dfrac{2}{b} - \dfrac{1}{c}$
$ \Rightarrow \dfrac{2}{b} - \dfrac{1}{a} = \dfrac{1}{c}$
Now substitute the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
$\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \left( {\dfrac{2}{b} - \dfrac{1}{a}} \right)} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \left( {\dfrac{2}{b} - \dfrac{1}{c}} \right)} \right)$
Now add or subtract all like terms.
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{2}{b} + \dfrac{1}{a}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{2}{b} + \dfrac{1}{c}} \right)$
$\Rightarrow \left( {\dfrac{2}{a} - \dfrac{1}{b}} \right)\left( {\dfrac{2}{c} - \dfrac{1}{b}} \right)$
Multiply in both terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}} + \dfrac{1}{{{b^2}}}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}}$
Now take common $ - \dfrac{2}{b}$ from the last two terms
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{2}{b}} \right)$ Since $ - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b} \Rightarrow \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{4}{{{b^2}}}$
Subtract like terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
Option ‘B’ is correct
Note: To calculate the value of the given expression, we should put the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
Formula Used:
If $a,b,c$ are in AP, then $b - a = c - b$.
Complete step by step solution:
Given that, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP.
Now apply the condition of AP.
$\dfrac{1}{b} - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{1}{b}$
Now subtract $\dfrac{1}{b}$ from both sides.
$ \Rightarrow \dfrac{1}{b} - \dfrac{1}{a} - \dfrac{1}{b} = \dfrac{1}{c} - \dfrac{1}{b} - \dfrac{1}{b}$
$ \Rightarrow - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b}$
Multiply -1 both sides of the equation.
$ \Rightarrow \dfrac{1}{a} = \dfrac{2}{b} - \dfrac{1}{c}$
$ \Rightarrow \dfrac{2}{b} - \dfrac{1}{a} = \dfrac{1}{c}$
Now substitute the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
$\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \left( {\dfrac{2}{b} - \dfrac{1}{a}} \right)} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \left( {\dfrac{2}{b} - \dfrac{1}{c}} \right)} \right)$
Now add or subtract all like terms.
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{2}{b} + \dfrac{1}{a}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{2}{b} + \dfrac{1}{c}} \right)$
$\Rightarrow \left( {\dfrac{2}{a} - \dfrac{1}{b}} \right)\left( {\dfrac{2}{c} - \dfrac{1}{b}} \right)$
Multiply in both terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}} + \dfrac{1}{{{b^2}}}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}}$
Now take common $ - \dfrac{2}{b}$ from the last two terms
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{2}{b}} \right)$ Since $ - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b} \Rightarrow \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{4}{{{b^2}}}$
Subtract like terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
Option ‘B’ is correct
Note: To calculate the value of the given expression, we should put the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

In a family each daughter has the same number of brothers class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

