
If $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP, then find the value $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$.
A. $\dfrac{{4{b^2} - 3ac}}{{abc}}$
B. $\dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
C. $\dfrac{4}{{ac}} - \dfrac{5}{{{b^2}}}$
D. $\dfrac{{4{b^2} + 3ac}}{{a{b^2}c}}$
Answer
217.5k+ views
Hint: First we will apply the condition of AP to the series $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$. From the condition, we will find the value of $\dfrac{1}{a}$. Then substitute the value of $\dfrac{1}{a}$ and $\dfrac{1}{c}$ in the given expression and simplify the expression to get the desired result.
Formula Used:
If $a,b,c$ are in AP, then $b - a = c - b$.
Complete step by step solution:
Given that, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP.
Now apply the condition of AP.
$\dfrac{1}{b} - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{1}{b}$
Now subtract $\dfrac{1}{b}$ from both sides.
$ \Rightarrow \dfrac{1}{b} - \dfrac{1}{a} - \dfrac{1}{b} = \dfrac{1}{c} - \dfrac{1}{b} - \dfrac{1}{b}$
$ \Rightarrow - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b}$
Multiply -1 both sides of the equation.
$ \Rightarrow \dfrac{1}{a} = \dfrac{2}{b} - \dfrac{1}{c}$
$ \Rightarrow \dfrac{2}{b} - \dfrac{1}{a} = \dfrac{1}{c}$
Now substitute the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
$\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \left( {\dfrac{2}{b} - \dfrac{1}{a}} \right)} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \left( {\dfrac{2}{b} - \dfrac{1}{c}} \right)} \right)$
Now add or subtract all like terms.
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{2}{b} + \dfrac{1}{a}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{2}{b} + \dfrac{1}{c}} \right)$
$\Rightarrow \left( {\dfrac{2}{a} - \dfrac{1}{b}} \right)\left( {\dfrac{2}{c} - \dfrac{1}{b}} \right)$
Multiply in both terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}} + \dfrac{1}{{{b^2}}}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}}$
Now take common $ - \dfrac{2}{b}$ from the last two terms
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{2}{b}} \right)$ Since $ - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b} \Rightarrow \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{4}{{{b^2}}}$
Subtract like terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
Option ‘B’ is correct
Note: To calculate the value of the given expression, we should put the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
Formula Used:
If $a,b,c$ are in AP, then $b - a = c - b$.
Complete step by step solution:
Given that, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP.
Now apply the condition of AP.
$\dfrac{1}{b} - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{1}{b}$
Now subtract $\dfrac{1}{b}$ from both sides.
$ \Rightarrow \dfrac{1}{b} - \dfrac{1}{a} - \dfrac{1}{b} = \dfrac{1}{c} - \dfrac{1}{b} - \dfrac{1}{b}$
$ \Rightarrow - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b}$
Multiply -1 both sides of the equation.
$ \Rightarrow \dfrac{1}{a} = \dfrac{2}{b} - \dfrac{1}{c}$
$ \Rightarrow \dfrac{2}{b} - \dfrac{1}{a} = \dfrac{1}{c}$
Now substitute the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
$\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \left( {\dfrac{2}{b} - \dfrac{1}{a}} \right)} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \left( {\dfrac{2}{b} - \dfrac{1}{c}} \right)} \right)$
Now add or subtract all like terms.
$\Rightarrow \left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{2}{b} + \dfrac{1}{a}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{2}{b} + \dfrac{1}{c}} \right)$
$\Rightarrow \left( {\dfrac{2}{a} - \dfrac{1}{b}} \right)\left( {\dfrac{2}{c} - \dfrac{1}{b}} \right)$
Multiply in both terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}} + \dfrac{1}{{{b^2}}}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{{bc}} - \dfrac{2}{{ab}}$
Now take common $ - \dfrac{2}{b}$ from the last two terms
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{2}{b}\left( {\dfrac{2}{b}} \right)$ Since $ - \dfrac{1}{a} = \dfrac{1}{c} - \dfrac{2}{b} \Rightarrow \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$
$\Rightarrow \dfrac{4}{{ac}} + \dfrac{1}{{{b^2}}} - \dfrac{4}{{{b^2}}}$
Subtract like terms
$\Rightarrow \dfrac{4}{{ac}} - \dfrac{3}{{{b^2}}}$
Option ‘B’ is correct
Note: To calculate the value of the given expression, we should put the value of $\dfrac{1}{a}$ in $\left( {\dfrac{1}{b} + \dfrac{1}{c} - \dfrac{1}{a}} \right)$ and $\dfrac{1}{c}$ in $\left( {\dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c}} \right)$.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Charge Density Formula Explained: Definition, Units & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Charging and Discharging of a Capacitor Explained Simply

Charging by Induction: Definition, Steps & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

