
If \[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]. Then calculate the value of \[xyz\].
A. 0
B. 1
C. \[x + y + z + 2\]
D. \[x + y + z\]
Answer
160.8k+ views
Hint: First we will raise to power \[y\] both sides of \[{a^x} = bc\] and simplify it. Then substitute \[{b^y} = ac\]. Again, we will raise to power \[z\]. Then put the value \[{c^z}\]. Then we will use the indices \[{a^m} \cdot {a^n} = {a^{m + n}}\] to simplify it and plug \[bc = {a^x}\]. At least we compare the power of \[a\]of the equation to get the value of \[xyz\].
Formula Used:
\[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
Complete step by step solution:
Given that,
\[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]
Now raise to power \[y\] on both sides of \[{a^x} = bc\]
\[{\left( {{a^x}} \right)^y} = {\left( {bc} \right)^y}\]
Applying the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xy}} = {b^y}{c^y}\]
Putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xy}} = ac \cdot {c^y}\]
Now raise to power \[z\] on both sides of the equation
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {\left( {ac \cdot {c^y}} \right)^z}\]
Applying the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{c^{yz}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{\left( {{c^z}} \right)^y}\]
Now putting \[{c^z} = ab\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot \left( {ab} \right) \cdot {\left( {ab} \right)^y}\]
Applying the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot a \cdot b \cdot {a^y} \cdot {b^y}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot {b^y} \cdot b\]
Now putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot ac \cdot b\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot bc\]
Now putting \[bc = {a^x}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot {a^x}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{x + z + y + 2}}\]
Now compare the power \[a\]
\[ \Rightarrow xyz = x + z + y + 2\]
Hence option B is the correct option.
Note:Students often confused with the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {{a^m}} \right)^n} = {a^{m + n}}\]. The correct formulas are \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{a^m} \cdot {a^n} = {a^{m + n}}\].
Formula Used:
\[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
Complete step by step solution:
Given that,
\[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]
Now raise to power \[y\] on both sides of \[{a^x} = bc\]
\[{\left( {{a^x}} \right)^y} = {\left( {bc} \right)^y}\]
Applying the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xy}} = {b^y}{c^y}\]
Putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xy}} = ac \cdot {c^y}\]
Now raise to power \[z\] on both sides of the equation
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {\left( {ac \cdot {c^y}} \right)^z}\]
Applying the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{c^{yz}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{\left( {{c^z}} \right)^y}\]
Now putting \[{c^z} = ab\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot \left( {ab} \right) \cdot {\left( {ab} \right)^y}\]
Applying the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot a \cdot b \cdot {a^y} \cdot {b^y}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot {b^y} \cdot b\]
Now putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot ac \cdot b\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot bc\]
Now putting \[bc = {a^x}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot {a^x}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{x + z + y + 2}}\]
Now compare the power \[a\]
\[ \Rightarrow xyz = x + z + y + 2\]
Hence option B is the correct option.
Note:Students often confused with the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {{a^m}} \right)^n} = {a^{m + n}}\]. The correct formulas are \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{a^m} \cdot {a^n} = {a^{m + n}}\].
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Trending doubts
JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

JEE Main B.Arch Cut Off Percentile 2025

JoSAA Counselling 2025: Registration Dates OUT, Eligibility Criteria, Cutoffs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

List of Fastest Century in IPL History
