
If \[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]. Then calculate the value of \[xyz\].
A. 0
B. 1
C. \[x + y + z + 2\]
D. \[x + y + z\]
Answer
216.3k+ views
Hint: First we will raise to power \[y\] both sides of \[{a^x} = bc\] and simplify it. Then substitute \[{b^y} = ac\]. Again, we will raise to power \[z\]. Then put the value \[{c^z}\]. Then we will use the indices \[{a^m} \cdot {a^n} = {a^{m + n}}\] to simplify it and plug \[bc = {a^x}\]. At least we compare the power of \[a\]of the equation to get the value of \[xyz\].
Formula Used:
\[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
Complete step by step solution:
Given that,
\[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]
Now raise to power \[y\] on both sides of \[{a^x} = bc\]
\[{\left( {{a^x}} \right)^y} = {\left( {bc} \right)^y}\]
Applying the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xy}} = {b^y}{c^y}\]
Putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xy}} = ac \cdot {c^y}\]
Now raise to power \[z\] on both sides of the equation
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {\left( {ac \cdot {c^y}} \right)^z}\]
Applying the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{c^{yz}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{\left( {{c^z}} \right)^y}\]
Now putting \[{c^z} = ab\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot \left( {ab} \right) \cdot {\left( {ab} \right)^y}\]
Applying the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot a \cdot b \cdot {a^y} \cdot {b^y}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot {b^y} \cdot b\]
Now putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot ac \cdot b\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot bc\]
Now putting \[bc = {a^x}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot {a^x}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{x + z + y + 2}}\]
Now compare the power \[a\]
\[ \Rightarrow xyz = x + z + y + 2\]
Hence option B is the correct option.
Note:Students often confused with the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {{a^m}} \right)^n} = {a^{m + n}}\]. The correct formulas are \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{a^m} \cdot {a^n} = {a^{m + n}}\].
Formula Used:
\[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
Complete step by step solution:
Given that,
\[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]
Now raise to power \[y\] on both sides of \[{a^x} = bc\]
\[{\left( {{a^x}} \right)^y} = {\left( {bc} \right)^y}\]
Applying the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xy}} = {b^y}{c^y}\]
Putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xy}} = ac \cdot {c^y}\]
Now raise to power \[z\] on both sides of the equation
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {\left( {ac \cdot {c^y}} \right)^z}\]
Applying the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{c^{yz}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{\left( {{c^z}} \right)^y}\]
Now putting \[{c^z} = ab\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot \left( {ab} \right) \cdot {\left( {ab} \right)^y}\]
Applying the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot a \cdot b \cdot {a^y} \cdot {b^y}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot {b^y} \cdot b\]
Now putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot ac \cdot b\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot bc\]
Now putting \[bc = {a^x}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot {a^x}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{x + z + y + 2}}\]
Now compare the power \[a\]
\[ \Rightarrow xyz = x + z + y + 2\]
Hence option B is the correct option.
Note:Students often confused with the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {{a^m}} \right)^n} = {a^{m + n}}\]. The correct formulas are \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{a^m} \cdot {a^n} = {a^{m + n}}\].
Recently Updated Pages
JEE Main 2024 (January 24 Shift 1) Question Paper with Solutions [PDF]

Progressive Wave: Meaning, Types & Examples Explained

Temperature Dependence of Resistivity Explained

JEE Main 2024 (January 25 Shift 1) Physics Question Paper with Solutions [PDF]

Difference Between Vectors and Scalars: JEE Main 2026

Salt Hydrolysis IIT JEE | Aсіdіtу and Alkаlіnіtу of Sаlt Sоlutіоns JEE Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

