
If \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\], then, \[a,b,c\] and \[d\]
A. are in A.P.
B. are in G.P.
C. are in H.P.
D. satisfy \[ab = cd\]
Answer
217.5k+ views
Hint: First, the left side of the given inequality is arranged to the form of the sum of the squares and then it is examined whether \[a,b,c,d\] are in A.P., G.P., H.P. or \[ab = cd\].
Formula Used:
If \[a,b,c,d\] are in A.P., then \[b - a = c - b = d - c\].
If \[a,b,c,d\] are in G.P., then \[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\].
If \[a,b,c,d\] are in H.P., then \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\] are in A.P.
Complete step by step solution:
We have been given that \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\]
Rearrange the left side of the given in-equation in the form of sum of the squares
\[\begin{array}{l}({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\\ \Rightarrow {a^2}{p^2} + {b^2}{p^2} + {c^2}{p^2} - 2abp - 2bcp - 2cdp + {b^2} + {c^2} + {d^2} \le 0\\ \Rightarrow ({a^2}{p^2} - 2abp + {b^2}) + ({b^2}{p^2} - 2bcp + {c^2}) + ({c^2}{p^2} - 2cdp + + {d^2}) \le 0\\ \Rightarrow {(ap - b)^2} + {(bp - c)^2} + {(cp - d)^2} \le 0\end{array}\]
We know that the square of a real number can never be negative.
Since, \[a,b,c,d\] and \[p\] are real numbers and the basic mathematical operations i.e. addition, subtraction, multiplication and division on real numbers also results in real numbers, \[(ap - b),(bp - c),(cp - d)\] are also real numbers and their squares can not be negative.
Thus equating the squares to zero, we have
\[\begin{array}{l}{(ap - b)^2} = 0\\ \Rightarrow ap - b = 0\\ \Rightarrow ap = b\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{a}{b}\] ………………………equation (1)
Similarly,
\[\begin{array}{l}{(bp - c)^2} = 0\\ \Rightarrow bp - c = 0\\ \Rightarrow bp = c\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{c}{b}\] ………………………equation (2)
And also
\[\begin{array}{l}{(cp - d)^2} = 0\\ \Rightarrow cp - d = 0\\ \Rightarrow cp = d\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{d}{c}\] ………………………equation (3)
From equation (1), (2) and (3) it is clear that
\[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\] , which implies that \[a,b,c,d\] are in G.P. as the numbers in the sequence have a common ratio.
Option ‘B’ is correct
Note: From the given that, the relation between \[a,b,c,d\] is established. If the four numbers have a common ratio, then they will be in G.P., but, if the four numbers have a common difference, then they will be in A.P.
Formula Used:
If \[a,b,c,d\] are in A.P., then \[b - a = c - b = d - c\].
If \[a,b,c,d\] are in G.P., then \[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\].
If \[a,b,c,d\] are in H.P., then \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\] are in A.P.
Complete step by step solution:
We have been given that \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\]
Rearrange the left side of the given in-equation in the form of sum of the squares
\[\begin{array}{l}({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\\ \Rightarrow {a^2}{p^2} + {b^2}{p^2} + {c^2}{p^2} - 2abp - 2bcp - 2cdp + {b^2} + {c^2} + {d^2} \le 0\\ \Rightarrow ({a^2}{p^2} - 2abp + {b^2}) + ({b^2}{p^2} - 2bcp + {c^2}) + ({c^2}{p^2} - 2cdp + + {d^2}) \le 0\\ \Rightarrow {(ap - b)^2} + {(bp - c)^2} + {(cp - d)^2} \le 0\end{array}\]
We know that the square of a real number can never be negative.
Since, \[a,b,c,d\] and \[p\] are real numbers and the basic mathematical operations i.e. addition, subtraction, multiplication and division on real numbers also results in real numbers, \[(ap - b),(bp - c),(cp - d)\] are also real numbers and their squares can not be negative.
Thus equating the squares to zero, we have
\[\begin{array}{l}{(ap - b)^2} = 0\\ \Rightarrow ap - b = 0\\ \Rightarrow ap = b\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{a}{b}\] ………………………equation (1)
Similarly,
\[\begin{array}{l}{(bp - c)^2} = 0\\ \Rightarrow bp - c = 0\\ \Rightarrow bp = c\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{c}{b}\] ………………………equation (2)
And also
\[\begin{array}{l}{(cp - d)^2} = 0\\ \Rightarrow cp - d = 0\\ \Rightarrow cp = d\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{d}{c}\] ………………………equation (3)
From equation (1), (2) and (3) it is clear that
\[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\] , which implies that \[a,b,c,d\] are in G.P. as the numbers in the sequence have a common ratio.
Option ‘B’ is correct
Note: From the given that, the relation between \[a,b,c,d\] is established. If the four numbers have a common ratio, then they will be in G.P., but, if the four numbers have a common difference, then they will be in A.P.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Effect of Dielectric on Capacitance: Explained Simply

Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Dipole: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

