
If ${a_1},{a_2},...{a_n}$are in A.P, then $\dfrac{1}{{{a_1}{a_2}}},\dfrac{1}{{{a_2}{a_3}}},...~\dfrac{1}{{{a_{n - 1}}{a_n}}}$is
A. $\dfrac{{n - 1}}{{{a_1}{a_n}}}$
B. $\dfrac{1}{{{a_1}{a_n}}}$
C. $\dfrac{{n + 1}}{{{a_1}{a_n}}}$
D. $\dfrac{n}{{{a_1}{a_n}}}$
Answer
163.2k+ views
Hint: In this question, we will find the common difference of the given A.P then substitute all the values and simply after that we will use the formula of the $n^{th}$ term of A.P to find the result.
Formula Used:
1. ${a_n} = a + \left( {n - 1} \right)d$
2. d = Second term - First term
Complete step by step solution:
We are given that ${a_1},{\text{ }}{a_2}, \ldots {a_n}$ are in A.P
Let $d$ be the common difference between A.P
$d{\text{ }} = {\text{ }}{a_2} - {a_1}\; = {\text{ }}{a_3} - {a_2}\; = {\text{ }}{a_4} - {a_3}\; \ldots . = {\text{ }}{a_n} - {a_{n - 1}}$
So,
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{d}{{{a_1}{a_2}}} + \dfrac{d}{{{a_2}{a_3}}} + .... + \dfrac{d}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {{a_2} - {a_1}} \right)}}{{{a_1}{a_2}}} + \dfrac{{\left( {{a_3} - {a_2}} \right)}}{{{a_2}{a_3}}} + ...\dfrac{{\left( {{a_n} - {a_{n - 1}}} \right)}}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\left( {\dfrac{{{a_2}}}{{{a_1}{a_2}}} - \dfrac{{{a_1}}}{{{a_1}{a_2}}}} \right) + \left( {\dfrac{{{a_3}}}{{{a_2}{a_3}}} - \dfrac{{{a_2}}}{{{a_2}{a_3}}}} \right) + ....\left( {\dfrac{{{a_n}}}{{{a_{n - 1}}{a_n}}} - \dfrac{{{a_{n - 1}}}}{{{a_{n - 1}}{a_n}}}} \right)} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_2}}} - \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 1}}}} - \dfrac{1}{{{a_n}}}} \right) \\
$
Further solving we get
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_n} - {a_1}}}{{{a_1}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_1} + \left( {n - 1} \right)d - {a_1}}}{{{a_1}{a_n}}}} \right)~~~~~\left( {\because {a_n} = a + \left( {n - 1} \right)d} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {n - 1} \right)d}}{{{a_1}{a_n}}}} \right) \\
$
Furthermore, solving we get
$\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \dfrac{{n - 1}}{{{a_1}{a_n}}}$
Option ‘A’ is correct
Note: To make the problem simpler and easier to solve, we must recall the formulas of an A.P. series in these types of situations. We may get the values of variables in the series using the A.P. series formula, and then use them to calculate the desired solutions to the problem. We come across quite a few examples of advancement in our daily lives. For example, class roll numbers.
Formula Used:
1. ${a_n} = a + \left( {n - 1} \right)d$
2. d = Second term - First term
Complete step by step solution:
We are given that ${a_1},{\text{ }}{a_2}, \ldots {a_n}$ are in A.P
Let $d$ be the common difference between A.P
$d{\text{ }} = {\text{ }}{a_2} - {a_1}\; = {\text{ }}{a_3} - {a_2}\; = {\text{ }}{a_4} - {a_3}\; \ldots . = {\text{ }}{a_n} - {a_{n - 1}}$
So,
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{d}{{{a_1}{a_2}}} + \dfrac{d}{{{a_2}{a_3}}} + .... + \dfrac{d}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {{a_2} - {a_1}} \right)}}{{{a_1}{a_2}}} + \dfrac{{\left( {{a_3} - {a_2}} \right)}}{{{a_2}{a_3}}} + ...\dfrac{{\left( {{a_n} - {a_{n - 1}}} \right)}}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\left( {\dfrac{{{a_2}}}{{{a_1}{a_2}}} - \dfrac{{{a_1}}}{{{a_1}{a_2}}}} \right) + \left( {\dfrac{{{a_3}}}{{{a_2}{a_3}}} - \dfrac{{{a_2}}}{{{a_2}{a_3}}}} \right) + ....\left( {\dfrac{{{a_n}}}{{{a_{n - 1}}{a_n}}} - \dfrac{{{a_{n - 1}}}}{{{a_{n - 1}}{a_n}}}} \right)} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_2}}} - \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 1}}}} - \dfrac{1}{{{a_n}}}} \right) \\
$
Further solving we get
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_n} - {a_1}}}{{{a_1}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_1} + \left( {n - 1} \right)d - {a_1}}}{{{a_1}{a_n}}}} \right)~~~~~\left( {\because {a_n} = a + \left( {n - 1} \right)d} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {n - 1} \right)d}}{{{a_1}{a_n}}}} \right) \\
$
Furthermore, solving we get
$\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \dfrac{{n - 1}}{{{a_1}{a_n}}}$
Option ‘A’ is correct
Note: To make the problem simpler and easier to solve, we must recall the formulas of an A.P. series in these types of situations. We may get the values of variables in the series using the A.P. series formula, and then use them to calculate the desired solutions to the problem. We come across quite a few examples of advancement in our daily lives. For example, class roll numbers.
Recently Updated Pages
How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Difference Between Acetic Acid and Glacial Acetic Acid: JEE Main 2024

Trending doubts
JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees
