
If ${a_1},{a_2},...{a_n}$are in A.P, then $\dfrac{1}{{{a_1}{a_2}}},\dfrac{1}{{{a_2}{a_3}}},...~\dfrac{1}{{{a_{n - 1}}{a_n}}}$is
A. $\dfrac{{n - 1}}{{{a_1}{a_n}}}$
B. $\dfrac{1}{{{a_1}{a_n}}}$
C. $\dfrac{{n + 1}}{{{a_1}{a_n}}}$
D. $\dfrac{n}{{{a_1}{a_n}}}$
Answer
216k+ views
Hint: In this question, we will find the common difference of the given A.P then substitute all the values and simply after that we will use the formula of the $n^{th}$ term of A.P to find the result.
Formula Used:
1. ${a_n} = a + \left( {n - 1} \right)d$
2. d = Second term - First term
Complete step by step solution:
We are given that ${a_1},{\text{ }}{a_2}, \ldots {a_n}$ are in A.P
Let $d$ be the common difference between A.P
$d{\text{ }} = {\text{ }}{a_2} - {a_1}\; = {\text{ }}{a_3} - {a_2}\; = {\text{ }}{a_4} - {a_3}\; \ldots . = {\text{ }}{a_n} - {a_{n - 1}}$
So,
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{d}{{{a_1}{a_2}}} + \dfrac{d}{{{a_2}{a_3}}} + .... + \dfrac{d}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {{a_2} - {a_1}} \right)}}{{{a_1}{a_2}}} + \dfrac{{\left( {{a_3} - {a_2}} \right)}}{{{a_2}{a_3}}} + ...\dfrac{{\left( {{a_n} - {a_{n - 1}}} \right)}}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\left( {\dfrac{{{a_2}}}{{{a_1}{a_2}}} - \dfrac{{{a_1}}}{{{a_1}{a_2}}}} \right) + \left( {\dfrac{{{a_3}}}{{{a_2}{a_3}}} - \dfrac{{{a_2}}}{{{a_2}{a_3}}}} \right) + ....\left( {\dfrac{{{a_n}}}{{{a_{n - 1}}{a_n}}} - \dfrac{{{a_{n - 1}}}}{{{a_{n - 1}}{a_n}}}} \right)} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_2}}} - \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 1}}}} - \dfrac{1}{{{a_n}}}} \right) \\
$
Further solving we get
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_n} - {a_1}}}{{{a_1}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_1} + \left( {n - 1} \right)d - {a_1}}}{{{a_1}{a_n}}}} \right)~~~~~\left( {\because {a_n} = a + \left( {n - 1} \right)d} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {n - 1} \right)d}}{{{a_1}{a_n}}}} \right) \\
$
Furthermore, solving we get
$\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \dfrac{{n - 1}}{{{a_1}{a_n}}}$
Option ‘A’ is correct
Note: To make the problem simpler and easier to solve, we must recall the formulas of an A.P. series in these types of situations. We may get the values of variables in the series using the A.P. series formula, and then use them to calculate the desired solutions to the problem. We come across quite a few examples of advancement in our daily lives. For example, class roll numbers.
Formula Used:
1. ${a_n} = a + \left( {n - 1} \right)d$
2. d = Second term - First term
Complete step by step solution:
We are given that ${a_1},{\text{ }}{a_2}, \ldots {a_n}$ are in A.P
Let $d$ be the common difference between A.P
$d{\text{ }} = {\text{ }}{a_2} - {a_1}\; = {\text{ }}{a_3} - {a_2}\; = {\text{ }}{a_4} - {a_3}\; \ldots . = {\text{ }}{a_n} - {a_{n - 1}}$
So,
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{d}{{{a_1}{a_2}}} + \dfrac{d}{{{a_2}{a_3}}} + .... + \dfrac{d}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {{a_2} - {a_1}} \right)}}{{{a_1}{a_2}}} + \dfrac{{\left( {{a_3} - {a_2}} \right)}}{{{a_2}{a_3}}} + ...\dfrac{{\left( {{a_n} - {a_{n - 1}}} \right)}}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\left( {\dfrac{{{a_2}}}{{{a_1}{a_2}}} - \dfrac{{{a_1}}}{{{a_1}{a_2}}}} \right) + \left( {\dfrac{{{a_3}}}{{{a_2}{a_3}}} - \dfrac{{{a_2}}}{{{a_2}{a_3}}}} \right) + ....\left( {\dfrac{{{a_n}}}{{{a_{n - 1}}{a_n}}} - \dfrac{{{a_{n - 1}}}}{{{a_{n - 1}}{a_n}}}} \right)} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_2}}} - \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 1}}}} - \dfrac{1}{{{a_n}}}} \right) \\
$
Further solving we get
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_n} - {a_1}}}{{{a_1}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_1} + \left( {n - 1} \right)d - {a_1}}}{{{a_1}{a_n}}}} \right)~~~~~\left( {\because {a_n} = a + \left( {n - 1} \right)d} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {n - 1} \right)d}}{{{a_1}{a_n}}}} \right) \\
$
Furthermore, solving we get
$\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \dfrac{{n - 1}}{{{a_1}{a_n}}}$
Option ‘A’ is correct
Note: To make the problem simpler and easier to solve, we must recall the formulas of an A.P. series in these types of situations. We may get the values of variables in the series using the A.P. series formula, and then use them to calculate the desired solutions to the problem. We come across quite a few examples of advancement in our daily lives. For example, class roll numbers.
Recently Updated Pages
JEE Main 2024 (January 24 Shift 1) Question Paper with Solutions [PDF]

Progressive Wave: Meaning, Types & Examples Explained

Temperature Dependence of Resistivity Explained

JEE Main 2024 (January 25 Shift 1) Physics Question Paper with Solutions [PDF]

Difference Between Vectors and Scalars: JEE Main 2026

Salt Hydrolysis IIT JEE | Aсіdіtу and Alkаlіnіtу of Sаlt Sоlutіоns JEE Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

