Answer
Verified
103.5k+ views
Hint: It must be remembered that \[\dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\] and also how we do a derivative when u and v both are functions in x and they both are multiplied. Thus, \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] .
Complete step-by-step answer:
As we know previously that \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] So here we will consider \[u = {5^x}\& v = {x^5}\]
So now it becomes
\[\begin{array}{l}
\therefore y = {5^x}{x^5}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\dfrac{d}{{dx}}{x^5} + {x^5}\dfrac{d}{{dx}}{5^x}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x} \times 5{x^4} + {x^5} \times {5^x} \times \log (5)
\end{array}\]
This is because \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\& \dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\]
So now, further solving it, we are getting
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\left( {{x^5}\log 5 + 5{x^4}} \right)\]
Which means that option D is the correct option here.
Note: A lot of students will take log on both sides as their very preliminary stage but that is not necessary and it will only just complicate things, yes we take logarithms on both sides to bring the power to bases and we are also aware of the fact that derivative of logarithmic y will be the inverse of y. But Using that here will Stretch the solution far more lengthier and thus chances of making silly mistakes will also be higher.
Complete step-by-step answer:
As we know previously that \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] So here we will consider \[u = {5^x}\& v = {x^5}\]
So now it becomes
\[\begin{array}{l}
\therefore y = {5^x}{x^5}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\dfrac{d}{{dx}}{x^5} + {x^5}\dfrac{d}{{dx}}{5^x}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x} \times 5{x^4} + {x^5} \times {5^x} \times \log (5)
\end{array}\]
This is because \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\& \dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\]
So now, further solving it, we are getting
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\left( {{x^5}\log 5 + 5{x^4}} \right)\]
Which means that option D is the correct option here.
Note: A lot of students will take log on both sides as their very preliminary stage but that is not necessary and it will only just complicate things, yes we take logarithms on both sides to bring the power to bases and we are also aware of the fact that derivative of logarithmic y will be the inverse of y. But Using that here will Stretch the solution far more lengthier and thus chances of making silly mistakes will also be higher.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main