
If a function is given as \[y = {5^x}{x^5}\] , then \[\dfrac{{dy}}{{dx}}\] is
A).\[{5^x}\left( {x\log 5 - 5{x^4}} \right)\]
B). \[{{x^5}\log 5 - 5{x^4}}\]
C). \[{{x^5}\log 5 + 5{x^4}}\]
D). \[{5^x}\left( {{x^5}\log 5 + 5{x^4}} \right)\]
Answer
205.5k+ views
Hint: It must be remembered that \[\dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\] and also how we do a derivative when u and v both are functions in x and they both are multiplied. Thus, \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] .
Complete step-by-step answer:
As we know previously that \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] So here we will consider \[u = {5^x}\& v = {x^5}\]
So now it becomes
\[\begin{array}{l}
\therefore y = {5^x}{x^5}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\dfrac{d}{{dx}}{x^5} + {x^5}\dfrac{d}{{dx}}{5^x}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x} \times 5{x^4} + {x^5} \times {5^x} \times \log (5)
\end{array}\]
This is because \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\& \dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\]
So now, further solving it, we are getting
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\left( {{x^5}\log 5 + 5{x^4}} \right)\]
Which means that option D is the correct option here.
Note: A lot of students will take log on both sides as their very preliminary stage but that is not necessary and it will only just complicate things, yes we take logarithms on both sides to bring the power to bases and we are also aware of the fact that derivative of logarithmic y will be the inverse of y. But Using that here will Stretch the solution far more lengthier and thus chances of making silly mistakes will also be higher.
Complete step-by-step answer:
As we know previously that \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] So here we will consider \[u = {5^x}\& v = {x^5}\]
So now it becomes
\[\begin{array}{l}
\therefore y = {5^x}{x^5}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\dfrac{d}{{dx}}{x^5} + {x^5}\dfrac{d}{{dx}}{5^x}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x} \times 5{x^4} + {x^5} \times {5^x} \times \log (5)
\end{array}\]
This is because \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\& \dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\]
So now, further solving it, we are getting
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\left( {{x^5}\log 5 + 5{x^4}} \right)\]
Which means that option D is the correct option here.
Note: A lot of students will take log on both sides as their very preliminary stage but that is not necessary and it will only just complicate things, yes we take logarithms on both sides to bring the power to bases and we are also aware of the fact that derivative of logarithmic y will be the inverse of y. But Using that here will Stretch the solution far more lengthier and thus chances of making silly mistakes will also be higher.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

JEE Main 2026 Marking Scheme- Marks Distribution, Negative and Total Marks

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Geostationary and Geosynchronous Satellites Explained

JEE Main 2025 Exam Pattern (Revised)

Photoelectric Effect and Stopping Potential: Concept, Formula & Exam Guide

JEE Main 2026 Session 1 Application Form Opening Soon – Important Dates & Details

Raoult's Law Explained: Formula, Derivation, Graphs & Problems

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Centre of Mass of Hollow and Solid Hemisphere Explained

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

