
Given that \[\tan \alpha \]and \[\tan \beta \]are the roots of \[\begin{array}{*{20}{c}}
{{x^2} - px + q}& = &0
\end{array}\], then the value of \[{\sin ^2}\left( {\alpha + \beta } \right)\]
A) \[\dfrac{{{p^2}}}{{{p^2} + {{\left( {1 - q} \right)}^2}}}\]
B) \[\dfrac{{{p^2}}}{{{p^2} + {q^2}}}\]
C) \[\dfrac{{{q^2}}}{{{p^2} + {{\left( {1 - q} \right)}^2}}}\]
D) \[\dfrac{{{p^2}}}{{{{\left( {p + q} \right)}^2}}}\]
Answer
164.1k+ views
Hint: In this question, we will have to determine the value of \[{\sin ^2}\left( {\alpha + \beta } \right)\]. first of all, we will determine the sum and the product of the roots of the equation. And then we will use some trigonometric formulas to achieve the answer. Hence, we will get a suitable answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
2) \[2\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }& = &{1 - \cos 2\theta }
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are given as \[\tan \alpha \]and \[\tan \beta \]. Therefore, we can write it as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} - px + q}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the given equation. Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha + \tan \beta }& = &p
\end{array}\] ------ (1)
And
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha \tan \beta }& = &q
\end{array}\] -------- (2)
Now we will have to determine the value of the \[{\sin ^2}\left( {\alpha + \beta } \right)\]. Therefore, for that purpose
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{1 - \cos 2\left( {\alpha + \beta } \right)}}{2}}
\end{array}\]
Now we know the formula of the \[\cos 2\left( {\alpha + \beta } \right)\]. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\tan }^2}\left( {\alpha + \beta } \right)}}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}} \right\}}
\end{array}\] ……………. (a)
Now to determine the value of the \[\tan \left( {\alpha + \beta } \right)\], we will do
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
Now put the value of the equation (1) and (2) in the above formula
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{p}{{1 - q}}}
\end{array}\] …………… (3)
Now we will put the value of equation (3) in equation (a). Therefore, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}{{1 + {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}} \right\}}
\end{array}\]
Now we will simplify the above expression. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {\dfrac{{{{\left( {1 - q} \right)}^2} + {p^2} - {{\left( {1 - q} \right)}^2} + {p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}} \right\}}
\end{array}\]
Finally, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{{p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}}
\end{array}\]
Hence, we can choose the correct answer from the given option.
Option ‘A’ is correct
Note: In this question, the first point is to keep in mind that change the \[{\sin ^2}\left( {\alpha + \beta } \right)\]in the form of \[\tan \left( {\alpha + \beta } \right)\]. Hence, we will be able to find the desired answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
2) \[2\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }& = &{1 - \cos 2\theta }
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are given as \[\tan \alpha \]and \[\tan \beta \]. Therefore, we can write it as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} - px + q}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the given equation. Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha + \tan \beta }& = &p
\end{array}\] ------ (1)
And
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha \tan \beta }& = &q
\end{array}\] -------- (2)
Now we will have to determine the value of the \[{\sin ^2}\left( {\alpha + \beta } \right)\]. Therefore, for that purpose
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{1 - \cos 2\left( {\alpha + \beta } \right)}}{2}}
\end{array}\]
Now we know the formula of the \[\cos 2\left( {\alpha + \beta } \right)\]. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\tan }^2}\left( {\alpha + \beta } \right)}}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}} \right\}}
\end{array}\] ……………. (a)
Now to determine the value of the \[\tan \left( {\alpha + \beta } \right)\], we will do
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
Now put the value of the equation (1) and (2) in the above formula
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{p}{{1 - q}}}
\end{array}\] …………… (3)
Now we will put the value of equation (3) in equation (a). Therefore, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}{{1 + {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}} \right\}}
\end{array}\]
Now we will simplify the above expression. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {\dfrac{{{{\left( {1 - q} \right)}^2} + {p^2} - {{\left( {1 - q} \right)}^2} + {p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}} \right\}}
\end{array}\]
Finally, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{{p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}}
\end{array}\]
Hence, we can choose the correct answer from the given option.
Option ‘A’ is correct
Note: In this question, the first point is to keep in mind that change the \[{\sin ^2}\left( {\alpha + \beta } \right)\]in the form of \[\tan \left( {\alpha + \beta } \right)\]. Hence, we will be able to find the desired answer.
Recently Updated Pages
Trigonometry Formulas: Complete List, Table, and Quick Revision

Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

JEE Main 2025 Cut-off For NIT Andhra Pradesh

Electrochemical Series: Definition and Its Applications

Convex and Concave Lenses - JEE

Other Pages
NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
