
Given that \[\tan \alpha \]and \[\tan \beta \]are the roots of \[\begin{array}{*{20}{c}}
{{x^2} - px + q}& = &0
\end{array}\], then the value of \[{\sin ^2}\left( {\alpha + \beta } \right)\]
A) \[\dfrac{{{p^2}}}{{{p^2} + {{\left( {1 - q} \right)}^2}}}\]
B) \[\dfrac{{{p^2}}}{{{p^2} + {q^2}}}\]
C) \[\dfrac{{{q^2}}}{{{p^2} + {{\left( {1 - q} \right)}^2}}}\]
D) \[\dfrac{{{p^2}}}{{{{\left( {p + q} \right)}^2}}}\]
Answer
217.2k+ views
Hint: In this question, we will have to determine the value of \[{\sin ^2}\left( {\alpha + \beta } \right)\]. first of all, we will determine the sum and the product of the roots of the equation. And then we will use some trigonometric formulas to achieve the answer. Hence, we will get a suitable answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
2) \[2\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }& = &{1 - \cos 2\theta }
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are given as \[\tan \alpha \]and \[\tan \beta \]. Therefore, we can write it as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} - px + q}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the given equation. Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha + \tan \beta }& = &p
\end{array}\] ------ (1)
And
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha \tan \beta }& = &q
\end{array}\] -------- (2)
Now we will have to determine the value of the \[{\sin ^2}\left( {\alpha + \beta } \right)\]. Therefore, for that purpose
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{1 - \cos 2\left( {\alpha + \beta } \right)}}{2}}
\end{array}\]
Now we know the formula of the \[\cos 2\left( {\alpha + \beta } \right)\]. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\tan }^2}\left( {\alpha + \beta } \right)}}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}} \right\}}
\end{array}\] ……………. (a)
Now to determine the value of the \[\tan \left( {\alpha + \beta } \right)\], we will do
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
Now put the value of the equation (1) and (2) in the above formula
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{p}{{1 - q}}}
\end{array}\] …………… (3)
Now we will put the value of equation (3) in equation (a). Therefore, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}{{1 + {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}} \right\}}
\end{array}\]
Now we will simplify the above expression. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {\dfrac{{{{\left( {1 - q} \right)}^2} + {p^2} - {{\left( {1 - q} \right)}^2} + {p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}} \right\}}
\end{array}\]
Finally, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{{p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}}
\end{array}\]
Hence, we can choose the correct answer from the given option.
Option ‘A’ is correct
Note: In this question, the first point is to keep in mind that change the \[{\sin ^2}\left( {\alpha + \beta } \right)\]in the form of \[\tan \left( {\alpha + \beta } \right)\]. Hence, we will be able to find the desired answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
2) \[2\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }& = &{1 - \cos 2\theta }
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are given as \[\tan \alpha \]and \[\tan \beta \]. Therefore, we can write it as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} - px + q}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the given equation. Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha + \tan \beta }& = &p
\end{array}\] ------ (1)
And
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha \tan \beta }& = &q
\end{array}\] -------- (2)
Now we will have to determine the value of the \[{\sin ^2}\left( {\alpha + \beta } \right)\]. Therefore, for that purpose
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{1 - \cos 2\left( {\alpha + \beta } \right)}}{2}}
\end{array}\]
Now we know the formula of the \[\cos 2\left( {\alpha + \beta } \right)\]. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\tan }^2}\left( {\alpha + \beta } \right)}}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}} \right\}}
\end{array}\] ……………. (a)
Now to determine the value of the \[\tan \left( {\alpha + \beta } \right)\], we will do
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
Now put the value of the equation (1) and (2) in the above formula
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{p}{{1 - q}}}
\end{array}\] …………… (3)
Now we will put the value of equation (3) in equation (a). Therefore, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}{{1 + {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}} \right\}}
\end{array}\]
Now we will simplify the above expression. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {\dfrac{{{{\left( {1 - q} \right)}^2} + {p^2} - {{\left( {1 - q} \right)}^2} + {p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}} \right\}}
\end{array}\]
Finally, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{{p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}}
\end{array}\]
Hence, we can choose the correct answer from the given option.
Option ‘A’ is correct
Note: In this question, the first point is to keep in mind that change the \[{\sin ^2}\left( {\alpha + \beta } \right)\]in the form of \[\tan \left( {\alpha + \beta } \right)\]. Hence, we will be able to find the desired answer.
Recently Updated Pages
Work vs Energy: Key Differences Explained Simply

Differentiability of Composite Functions Explained Simply

Differential Calculus: Concepts, Rules & Easy Examples

Differential Equations: Basics, Types & Solutions Explained

Differential Equations Practice Paper with Solutions

Dimensional Formulae and Dimensional Equations Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

