
Given that \[\tan \alpha \]and \[\tan \beta \]are the roots of \[\begin{array}{*{20}{c}}
{{x^2} - px + q}& = &0
\end{array}\], then the value of \[{\sin ^2}\left( {\alpha + \beta } \right)\]
A) \[\dfrac{{{p^2}}}{{{p^2} + {{\left( {1 - q} \right)}^2}}}\]
B) \[\dfrac{{{p^2}}}{{{p^2} + {q^2}}}\]
C) \[\dfrac{{{q^2}}}{{{p^2} + {{\left( {1 - q} \right)}^2}}}\]
D) \[\dfrac{{{p^2}}}{{{{\left( {p + q} \right)}^2}}}\]
Answer
232.8k+ views
Hint: In this question, we will have to determine the value of \[{\sin ^2}\left( {\alpha + \beta } \right)\]. first of all, we will determine the sum and the product of the roots of the equation. And then we will use some trigonometric formulas to achieve the answer. Hence, we will get a suitable answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
2) \[2\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }& = &{1 - \cos 2\theta }
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are given as \[\tan \alpha \]and \[\tan \beta \]. Therefore, we can write it as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} - px + q}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the given equation. Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha + \tan \beta }& = &p
\end{array}\] ------ (1)
And
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha \tan \beta }& = &q
\end{array}\] -------- (2)
Now we will have to determine the value of the \[{\sin ^2}\left( {\alpha + \beta } \right)\]. Therefore, for that purpose
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{1 - \cos 2\left( {\alpha + \beta } \right)}}{2}}
\end{array}\]
Now we know the formula of the \[\cos 2\left( {\alpha + \beta } \right)\]. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\tan }^2}\left( {\alpha + \beta } \right)}}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}} \right\}}
\end{array}\] ……………. (a)
Now to determine the value of the \[\tan \left( {\alpha + \beta } \right)\], we will do
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
Now put the value of the equation (1) and (2) in the above formula
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{p}{{1 - q}}}
\end{array}\] …………… (3)
Now we will put the value of equation (3) in equation (a). Therefore, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}{{1 + {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}} \right\}}
\end{array}\]
Now we will simplify the above expression. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {\dfrac{{{{\left( {1 - q} \right)}^2} + {p^2} - {{\left( {1 - q} \right)}^2} + {p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}} \right\}}
\end{array}\]
Finally, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{{p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}}
\end{array}\]
Hence, we can choose the correct answer from the given option.
Option ‘A’ is correct
Note: In this question, the first point is to keep in mind that change the \[{\sin ^2}\left( {\alpha + \beta } \right)\]in the form of \[\tan \left( {\alpha + \beta } \right)\]. Hence, we will be able to find the desired answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
2) \[2\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }& = &{1 - \cos 2\theta }
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are given as \[\tan \alpha \]and \[\tan \beta \]. Therefore, we can write it as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} - px + q}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the given equation. Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha + \tan \beta }& = &p
\end{array}\] ------ (1)
And
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha \tan \beta }& = &q
\end{array}\] -------- (2)
Now we will have to determine the value of the \[{\sin ^2}\left( {\alpha + \beta } \right)\]. Therefore, for that purpose
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{1 - \cos 2\left( {\alpha + \beta } \right)}}{2}}
\end{array}\]
Now we know the formula of the \[\cos 2\left( {\alpha + \beta } \right)\]. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\tan }^2}\left( {\alpha + \beta } \right)}}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}} \right\}}
\end{array}\] ……………. (a)
Now to determine the value of the \[\tan \left( {\alpha + \beta } \right)\], we will do
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
Now put the value of the equation (1) and (2) in the above formula
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{p}{{1 - q}}}
\end{array}\] …………… (3)
Now we will put the value of equation (3) in equation (a). Therefore, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}{{1 + {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}} \right\}}
\end{array}\]
Now we will simplify the above expression. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {\dfrac{{{{\left( {1 - q} \right)}^2} + {p^2} - {{\left( {1 - q} \right)}^2} + {p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}} \right\}}
\end{array}\]
Finally, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{{p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}}
\end{array}\]
Hence, we can choose the correct answer from the given option.
Option ‘A’ is correct
Note: In this question, the first point is to keep in mind that change the \[{\sin ^2}\left( {\alpha + \beta } \right)\]in the form of \[\tan \left( {\alpha + \beta } \right)\]. Hence, we will be able to find the desired answer.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

