
Given that \[\tan \alpha \]and \[\tan \beta \]are the roots of \[\begin{array}{*{20}{c}}
{{x^2} - px + q}& = &0
\end{array}\], then the value of \[{\sin ^2}\left( {\alpha + \beta } \right)\]
A) \[\dfrac{{{p^2}}}{{{p^2} + {{\left( {1 - q} \right)}^2}}}\]
B) \[\dfrac{{{p^2}}}{{{p^2} + {q^2}}}\]
C) \[\dfrac{{{q^2}}}{{{p^2} + {{\left( {1 - q} \right)}^2}}}\]
D) \[\dfrac{{{p^2}}}{{{{\left( {p + q} \right)}^2}}}\]
Answer
162.9k+ views
Hint: In this question, we will have to determine the value of \[{\sin ^2}\left( {\alpha + \beta } \right)\]. first of all, we will determine the sum and the product of the roots of the equation. And then we will use some trigonometric formulas to achieve the answer. Hence, we will get a suitable answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
2) \[2\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }& = &{1 - \cos 2\theta }
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are given as \[\tan \alpha \]and \[\tan \beta \]. Therefore, we can write it as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} - px + q}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the given equation. Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha + \tan \beta }& = &p
\end{array}\] ------ (1)
And
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha \tan \beta }& = &q
\end{array}\] -------- (2)
Now we will have to determine the value of the \[{\sin ^2}\left( {\alpha + \beta } \right)\]. Therefore, for that purpose
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{1 - \cos 2\left( {\alpha + \beta } \right)}}{2}}
\end{array}\]
Now we know the formula of the \[\cos 2\left( {\alpha + \beta } \right)\]. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\tan }^2}\left( {\alpha + \beta } \right)}}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}} \right\}}
\end{array}\] ……………. (a)
Now to determine the value of the \[\tan \left( {\alpha + \beta } \right)\], we will do
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
Now put the value of the equation (1) and (2) in the above formula
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{p}{{1 - q}}}
\end{array}\] …………… (3)
Now we will put the value of equation (3) in equation (a). Therefore, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}{{1 + {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}} \right\}}
\end{array}\]
Now we will simplify the above expression. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {\dfrac{{{{\left( {1 - q} \right)}^2} + {p^2} - {{\left( {1 - q} \right)}^2} + {p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}} \right\}}
\end{array}\]
Finally, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{{p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}}
\end{array}\]
Hence, we can choose the correct answer from the given option.
Option ‘A’ is correct
Note: In this question, the first point is to keep in mind that change the \[{\sin ^2}\left( {\alpha + \beta } \right)\]in the form of \[\tan \left( {\alpha + \beta } \right)\]. Hence, we will be able to find the desired answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
2) \[2\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }& = &{1 - \cos 2\theta }
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are given as \[\tan \alpha \]and \[\tan \beta \]. Therefore, we can write it as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} - px + q}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the given equation. Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha + \tan \beta }& = &p
\end{array}\] ------ (1)
And
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \alpha \tan \beta }& = &q
\end{array}\] -------- (2)
Now we will have to determine the value of the \[{\sin ^2}\left( {\alpha + \beta } \right)\]. Therefore, for that purpose
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{1 - \cos 2\left( {\alpha + \beta } \right)}}{2}}
\end{array}\]
Now we know the formula of the \[\cos 2\left( {\alpha + \beta } \right)\]. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\tan }^2}\left( {\alpha + \beta } \right)}}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}} \right\}}
\end{array}\] ……………. (a)
Now to determine the value of the \[\tan \left( {\alpha + \beta } \right)\], we will do
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}}
\end{array}\]
Now put the value of the equation (1) and (2) in the above formula
\[ \Rightarrow \begin{array}{*{20}{c}}
{\tan \left( {\alpha + \beta } \right)}& = &{\dfrac{p}{{1 - q}}}
\end{array}\] …………… (3)
Now we will put the value of equation (3) in equation (a). Therefore, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {1 - \dfrac{{1 - {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}{{1 + {{\left( {\dfrac{p}{{1 - q}}} \right)}^2}}}} \right\}}
\end{array}\]
Now we will simplify the above expression. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{1}{2}\left\{ {\dfrac{{{{\left( {1 - q} \right)}^2} + {p^2} - {{\left( {1 - q} \right)}^2} + {p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}} \right\}}
\end{array}\]
Finally, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\sin }^2}\left( {\alpha + \beta } \right)}& = &{\dfrac{{{p^2}}}{{{{\left( {1 - q} \right)}^2} + {p^2}}}}
\end{array}\]
Hence, we can choose the correct answer from the given option.
Option ‘A’ is correct
Note: In this question, the first point is to keep in mind that change the \[{\sin ^2}\left( {\alpha + \beta } \right)\]in the form of \[\tan \left( {\alpha + \beta } \right)\]. Hence, we will be able to find the desired answer.
Recently Updated Pages
How to Solve Electrical Circuits - Important Concepts for JEE

Travelling Waves - Important Concepts and Tips for JEE

Magnetic Force on a Current-Carrying Wire - Important Concepts and Tips for JEE

Difference Between Thermocouple and Rtd: JEE Main 2024

Static Friction - Important Concepts and Tips for JEE

Permutation and Combination – Definition, Formulas and Solved Examples

Trending doubts
JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

NEET 2025 – Every New Update You Need to Know
