
Forces M and N acting at a point O make an angle \[{150^{^0}}\]. Their resultant acts at O have a magnitude 2 unit and are perpendicular to M. Then, in the same unit, find the magnitudes of M and N.
A. \[2\sqrt 3 ,4\]
B. \[\dfrac{{\sqrt 3 }}{2},2\]
C. 3,4
D. 4,5
Answer
218.7k+ views
Hint:Before we proceed with the problem, it is important to know about the resultant vectors. The overall force that acts on the object is called a resultant force. It is a single force. The forces should be vectors. The resultant force also tells in what direction it is acting on an object.
Formula Used:
The formula to find the resultant of a vector is given by,
\[\tan \varphi = \left( {\dfrac{{B\sin \theta }}{{A + B\cos \theta }}} \right)\]……………….. (1)
Where, \[\theta \] is angle between N and M.
Complete step by step solution:
Now we can solve the problem step by step as follows.

Image: Resultant vector of M and N
The resultant of 2 vectors will not be more than the sum of those 2 vectors, that is we can write it as,
Resultant vectors = sum of the two vectors
\[{2^2} = {\left( {M + N} \right)^2}\]
\[{2^2} = {M^2} + {N^2} + 2MN\cos \theta \]
Here, \[\theta \] is angle between N and M
\[{2^2} = {M^2} + {N^2} + 2MN\cos {150^0}\]
\[\Rightarrow 4 = {M^2} + {N^2} - \sqrt 3 MN\]………………… (2)
\[\Rightarrow \cos {150^0}\]can be written as, \[\cos \left( {{{180}^0} - {{30}^0}} \right) = \cos {30^0}\]
Now, considering the equation (1)
\[\tan \varphi = \left( {\dfrac{{B\sin \theta }}{{A + B\cos \theta }}} \right)\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{2}} \right) = \left( {\dfrac{{N\sin {{150}^0}}}{{M + N\cos {{150}^0}}}} \right)\]
\[ \Rightarrow M + N\cos {150^0} = 0\]
\[ \Rightarrow M - N\left( {\dfrac{{\sqrt 3 }}{2}} \right) = 0\]
\[ \Rightarrow M = N\left( {\dfrac{{\sqrt 3 }}{2}} \right)\]………………….. (3)
Now, substituting the value of M in equation (2) we get,
\[4 = {\left( {N\dfrac{{\sqrt 3 }}{2}} \right)^2} + {N^2} - \sqrt 3 \left( {N\dfrac{{\sqrt 3 }}{2}} \right)N\]
\[\Rightarrow 4 = {N^2}\left( {\dfrac{1}{4}} \right)\]
\[\Rightarrow N = 4\]
In order to find the magnitude of M, substitute the value of N in equation (3) we get,
\[ \Rightarrow M = 4\left( {\dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow M = 4\left( {\dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \therefore M = 2\sqrt 3 \]
Therefore, the magnitudes of M and N are \[2\sqrt 3 ,4\].
Hence, option A is the correct answer
Note:Vectors are the units that have both magnitude and direction. We can immediately add and subtract if they are going in the same or the opposite direction. However, if they are all going in the same direction, we cannot just add. In a situation like this, we employ the resultant vector formula that will take the square root of each vector's sum of squares. The applications of resultant vectors are;
1. The Navigation boat is generally done using vectors.
2. Instructions of sports are based on using vectors.
Formula Used:
The formula to find the resultant of a vector is given by,
\[\tan \varphi = \left( {\dfrac{{B\sin \theta }}{{A + B\cos \theta }}} \right)\]……………….. (1)
Where, \[\theta \] is angle between N and M.
Complete step by step solution:
Now we can solve the problem step by step as follows.

Image: Resultant vector of M and N
The resultant of 2 vectors will not be more than the sum of those 2 vectors, that is we can write it as,
Resultant vectors = sum of the two vectors
\[{2^2} = {\left( {M + N} \right)^2}\]
\[{2^2} = {M^2} + {N^2} + 2MN\cos \theta \]
Here, \[\theta \] is angle between N and M
\[{2^2} = {M^2} + {N^2} + 2MN\cos {150^0}\]
\[\Rightarrow 4 = {M^2} + {N^2} - \sqrt 3 MN\]………………… (2)
\[\Rightarrow \cos {150^0}\]can be written as, \[\cos \left( {{{180}^0} - {{30}^0}} \right) = \cos {30^0}\]
Now, considering the equation (1)
\[\tan \varphi = \left( {\dfrac{{B\sin \theta }}{{A + B\cos \theta }}} \right)\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{2}} \right) = \left( {\dfrac{{N\sin {{150}^0}}}{{M + N\cos {{150}^0}}}} \right)\]
\[ \Rightarrow M + N\cos {150^0} = 0\]
\[ \Rightarrow M - N\left( {\dfrac{{\sqrt 3 }}{2}} \right) = 0\]
\[ \Rightarrow M = N\left( {\dfrac{{\sqrt 3 }}{2}} \right)\]………………….. (3)
Now, substituting the value of M in equation (2) we get,
\[4 = {\left( {N\dfrac{{\sqrt 3 }}{2}} \right)^2} + {N^2} - \sqrt 3 \left( {N\dfrac{{\sqrt 3 }}{2}} \right)N\]
\[\Rightarrow 4 = {N^2}\left( {\dfrac{1}{4}} \right)\]
\[\Rightarrow N = 4\]
In order to find the magnitude of M, substitute the value of N in equation (3) we get,
\[ \Rightarrow M = 4\left( {\dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow M = 4\left( {\dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \therefore M = 2\sqrt 3 \]
Therefore, the magnitudes of M and N are \[2\sqrt 3 ,4\].
Hence, option A is the correct answer
Note:Vectors are the units that have both magnitude and direction. We can immediately add and subtract if they are going in the same or the opposite direction. However, if they are all going in the same direction, we cannot just add. In a situation like this, we employ the resultant vector formula that will take the square root of each vector's sum of squares. The applications of resultant vectors are;
1. The Navigation boat is generally done using vectors.
2. Instructions of sports are based on using vectors.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

