
For the reaction, \[{\rm{2Cl(g)}} \to {\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g)}}\], the signs of \[{\rm{\Delta H}}\] and \[{\rm{\Delta S}}\] respectively, are:
A. \[ + , - \]
B. \[ + , + \]
C. \[ - , - \]
D. \[ - , + \]
Answer
220.8k+ views
Hint: Enthalpy change (\[{\rm{\Delta H}}\]) is defined as the total heat content of the system at constant pressure. Entropy is the extent of disorder of randomness in a system. Entropy change (\[{\rm{\Delta S}}\]) of a substance measures the disorder or randomness in a system.
Complete Step by Step Solution:
The given reaction is as: \[{\rm{2Cl(g)}} \to {\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g)}}\]
In the above reaction, the formation of one chlorine molecule can be seen from two chlorine atoms.
In exothermic reactions, heat energy is evolved (released). This lowers the enthalpy. Consequently, the enthalpy of the products becomes less as compared to the enthalpy of reactants. Therefore,
\[{\rm{\Delta H}} = {{\rm{H}}_{\rm{p}}} - {{\rm{H}}_{\rm{r}}} = \,{\rm{negative}}\,{\rm{(}} - {\rm{)}}\]
In endothermic reactions, heat is absorbed. Heat absorbed raises the enthalpy of the products. Consequently, the enthalpy of products becomes greater than that of reactants. Hence, \[{\rm{\Delta H}} = {{\rm{H}}_{\rm{p}}} - {{\rm{H}}_{\rm{r}}} = \,{\rm{positive}}\,{\rm{( + )}}\]
Since bond formation is taking place in the reaction, this means that the energy is released (exothermic). Hence, change in enthalpy (\[{\rm{\Delta H}}\]) will be negative \[{\rm{(}} - )\].
Entropy has a direct relation with the number of moles of gas. If there is an increase in the number of moles on the product side, then the entropy would be higher (positive). But if there is a decrease in the number of moles on the product side, then the entropy would be lower (negative).
Since two moles of chlorine atom (reactant) forms one mole of chlorine molecule (product), therefore the sign of entropy change (\[{\rm{\Delta S}}\]) will be negative \[{\rm{(}} - )\]. This is because the number of moles on the product side is less than the number of moles on the reactant side.
Hence, both enthalpy change (\[{\rm{\Delta H}}\]) and entropy change (\[{\rm{\Delta S}}\]) are found to be negative \[{\rm{(}} - )\].
Therefore, option C is correct.
Note: Absolute value of enthalpy of a system cannot be determined just like the internal energy. The enthalpy of a system is a state function, therefore, the magnitude of enthalpy change (\[{\rm{\Delta H}}\]) depends only on the enthalpies of the initial and final states. Thus, we can write \[{\rm{\Delta H}} = {{\rm{H}}_{{\rm{final}}}} - {{\rm{H}}_{{\rm{initial}}}}\]. Entropy is also a state function like enthalpy and internal energy. So, it depends upon the final and initial states of a system. Thus, entropy change can be written as; \[{\rm{\Delta S}} = {{\rm{S}}_{{\rm{final state}}}} - {{\rm{S}}_{{\rm{initial state}}}}\] when a system undergoes a change from initial state to final state.
Complete Step by Step Solution:
The given reaction is as: \[{\rm{2Cl(g)}} \to {\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g)}}\]
In the above reaction, the formation of one chlorine molecule can be seen from two chlorine atoms.
In exothermic reactions, heat energy is evolved (released). This lowers the enthalpy. Consequently, the enthalpy of the products becomes less as compared to the enthalpy of reactants. Therefore,
\[{\rm{\Delta H}} = {{\rm{H}}_{\rm{p}}} - {{\rm{H}}_{\rm{r}}} = \,{\rm{negative}}\,{\rm{(}} - {\rm{)}}\]
In endothermic reactions, heat is absorbed. Heat absorbed raises the enthalpy of the products. Consequently, the enthalpy of products becomes greater than that of reactants. Hence, \[{\rm{\Delta H}} = {{\rm{H}}_{\rm{p}}} - {{\rm{H}}_{\rm{r}}} = \,{\rm{positive}}\,{\rm{( + )}}\]
Since bond formation is taking place in the reaction, this means that the energy is released (exothermic). Hence, change in enthalpy (\[{\rm{\Delta H}}\]) will be negative \[{\rm{(}} - )\].
Entropy has a direct relation with the number of moles of gas. If there is an increase in the number of moles on the product side, then the entropy would be higher (positive). But if there is a decrease in the number of moles on the product side, then the entropy would be lower (negative).
Since two moles of chlorine atom (reactant) forms one mole of chlorine molecule (product), therefore the sign of entropy change (\[{\rm{\Delta S}}\]) will be negative \[{\rm{(}} - )\]. This is because the number of moles on the product side is less than the number of moles on the reactant side.
Hence, both enthalpy change (\[{\rm{\Delta H}}\]) and entropy change (\[{\rm{\Delta S}}\]) are found to be negative \[{\rm{(}} - )\].
Therefore, option C is correct.
Note: Absolute value of enthalpy of a system cannot be determined just like the internal energy. The enthalpy of a system is a state function, therefore, the magnitude of enthalpy change (\[{\rm{\Delta H}}\]) depends only on the enthalpies of the initial and final states. Thus, we can write \[{\rm{\Delta H}} = {{\rm{H}}_{{\rm{final}}}} - {{\rm{H}}_{{\rm{initial}}}}\]. Entropy is also a state function like enthalpy and internal energy. So, it depends upon the final and initial states of a system. Thus, entropy change can be written as; \[{\rm{\Delta S}} = {{\rm{S}}_{{\rm{final state}}}} - {{\rm{S}}_{{\rm{initial state}}}}\] when a system undergoes a change from initial state to final state.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

