
For the reaction, $A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$, the n-factor is:
(A) 11
(B) 28
(C) 61
(D) 5/3
Answer
218.1k+ views
Hint: First break $A{s_2}{S_3}$ into its constituent atoms and see their individual oxidation states. Then see the oxidation states of the products obtained and count the total number of electrons lost or gained. These lost or gained electrons form the n-factor of the reaction.
Complete step by step answer:
-The given reaction is the oxidation reaction of $A{s_2}{S_3}$. First let us see the complete reaction:
$A{s_2}{S_3} \to 2As{O_4}^{ - 3} + 3S{O_4}^{ - 2}$
Here in $As{O_4}^{ - 3}$ the oxidation state of As is (+5). So, in short this reaction can also be written as:
$A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$
Balanced reaction is: $A{s_2}{S_3} \to 2A{s^{ + 5}} + 3S{O_4}^{ - 2}$
-Now let us break the compound $A{s_2}{S_3}$ into 2 parts and see the oxidation states of As and S individually.
So, $A{s_2}{S_3}$ can also be written as a combination of $A{s_2}^{ + 6}$ and ${S_3}^{ - 6}$.
-Talking about $A{s_2}^{ + 6}$ we know that for 1 As atom the oxidation state was (+3) and so for 2 As atoms the oxidation state is (+6).
In $2A{s^{ + 5}}$ also the oxidation state of 1 As atom was (+5) but for 2 As atoms it is (+10).
After oxidation $A{s_2}^{ + 6}$ was converted into $2A{s^{ + 5}}$. We can also say that the oxidation state changed from (+6) to (+10). This means that there was a loss of 4 electrons.
This can be written in the form of reaction also:
$A{s_2}^{ + 6} \to 2A{s^{ + 5}} + 4{e^ - }$
-Now let’s talk about${S_3}^{ - 6}$. Here we know that the oxidation state of 1 S atom is (-2) and that for 3 S atoms is (-6).
In $3S{O_4}^{ - 2}$ the oxidation state of 1 S atom is (+6) and that of 3 S atoms is (+18).
After oxidation ${S_3}^{ - 6}$ was converted to $3S{O_4}^{ - 2}$. We can also say that its oxidation state changed from (-6) to (+18). This means that there was a loss of 24 electrons.
This can be written in the form of reaction also:
${S_3}^{ - 6} \to 3S{O_4}^{ - 2} + 24{e^ - }$
-The n-factor of the reaction is calculated by adding the total no of electrons lost which is:
= 4 + 24
= 28 electrons
So, the n-factor of the reaction is 28.
The correct option is: (B) 28.
Note: While calculating the oxidation states always check whether that state is for 1 atom or more atoms. Also check whether in that reaction those electrons are being lost or gained, that is that element is being reduced or oxidised.
Complete step by step answer:
-The given reaction is the oxidation reaction of $A{s_2}{S_3}$. First let us see the complete reaction:
$A{s_2}{S_3} \to 2As{O_4}^{ - 3} + 3S{O_4}^{ - 2}$
Here in $As{O_4}^{ - 3}$ the oxidation state of As is (+5). So, in short this reaction can also be written as:
$A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$
Balanced reaction is: $A{s_2}{S_3} \to 2A{s^{ + 5}} + 3S{O_4}^{ - 2}$
-Now let us break the compound $A{s_2}{S_3}$ into 2 parts and see the oxidation states of As and S individually.
So, $A{s_2}{S_3}$ can also be written as a combination of $A{s_2}^{ + 6}$ and ${S_3}^{ - 6}$.
-Talking about $A{s_2}^{ + 6}$ we know that for 1 As atom the oxidation state was (+3) and so for 2 As atoms the oxidation state is (+6).
In $2A{s^{ + 5}}$ also the oxidation state of 1 As atom was (+5) but for 2 As atoms it is (+10).
After oxidation $A{s_2}^{ + 6}$ was converted into $2A{s^{ + 5}}$. We can also say that the oxidation state changed from (+6) to (+10). This means that there was a loss of 4 electrons.
This can be written in the form of reaction also:
$A{s_2}^{ + 6} \to 2A{s^{ + 5}} + 4{e^ - }$
-Now let’s talk about${S_3}^{ - 6}$. Here we know that the oxidation state of 1 S atom is (-2) and that for 3 S atoms is (-6).
In $3S{O_4}^{ - 2}$ the oxidation state of 1 S atom is (+6) and that of 3 S atoms is (+18).
After oxidation ${S_3}^{ - 6}$ was converted to $3S{O_4}^{ - 2}$. We can also say that its oxidation state changed from (-6) to (+18). This means that there was a loss of 24 electrons.
This can be written in the form of reaction also:
${S_3}^{ - 6} \to 3S{O_4}^{ - 2} + 24{e^ - }$
-The n-factor of the reaction is calculated by adding the total no of electrons lost which is:
= 4 + 24
= 28 electrons
So, the n-factor of the reaction is 28.
The correct option is: (B) 28.
Note: While calculating the oxidation states always check whether that state is for 1 atom or more atoms. Also check whether in that reaction those electrons are being lost or gained, that is that element is being reduced or oxidised.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Electromagnetic Waves and Their Importance

Understanding Excess Pressure Inside a Liquid Drop

Understanding Elastic Collisions in Two Dimensions

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 1 Some Basic Concepts of Chemistry in Hindi - 2025-26

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions: Practice Problems, Answers & Exam Tricks

