
For air at room temperature the atmospheric pressure is $1.0 \times {10^5}N{m^{ - 2}}$ and density of air is $1.2kg{m^{ - 3}}$. For a tube of length 1.0m closed at one end the lowest frequency generated is $84Hz$. The value of γ (ratio of two specific heats) for air is:
A) $2.1$
B) $1.5$
C) $1.8$
D) $1.4$
Answer
214.2k+ views
Hint: Use the Newton’s formula for speed of sound and laplace’s correction that establishes a relationship between speed of sound wrt pressure, temperature and ratio of specific heats.
Complete step by step answer:
We know that $v = \sqrt {\dfrac{{\gamma P}}{\rho }} $, (According to Newton’s formula for speed of sound)
Where v is the velocity of sound,
$\gamma $is the ratio of the two specific heats (${C_p}\& {C_v}$) of air,
P is the pressure and
$\rho $is the density of air.
Now, for calculation v, we can use the relation among frequency(f), tube length(l), and velocity of air(v), and that relation is:
$f = \dfrac{v}{{4l}}$,
On putting values and solving, we get,
$84 = \dfrac{v}{{4 \times 1}}$
On solving it we get v as,
$v = 84 \times 4 = 336m{s^{ - 1}}$
Putting all values in Newton’s formula, we get,
$336 = \sqrt {\dfrac{{\gamma \times 1.0 \times {{10}^5}}}{{1.2}}} $
Squaring on both sides, we get,
\[{\left( {336} \right)^2} = \dfrac{{\gamma \times {{10}^5}}}{{1.2}}\]
On further solving we get gamma as,
$
\gamma = \dfrac{{{{\left( {336} \right)}^2} \times 1.2}}{{{{10}^5}}} \\
\gamma \approx 1.35 \approx 1.4 \\
$
So, the correct option is (D).
Note: In the tubes that are open from one end and close at other end, at close end, amplitude of the wave will be minimum, that is, 0 and at the open end, amplitude of wave will be maximum, that’s why we use the formula $f = \dfrac{v}{{4l}}$, as the wavelength becomes 4 times of length of tube.
Complete step by step answer:
We know that $v = \sqrt {\dfrac{{\gamma P}}{\rho }} $, (According to Newton’s formula for speed of sound)
Where v is the velocity of sound,
$\gamma $is the ratio of the two specific heats (${C_p}\& {C_v}$) of air,
P is the pressure and
$\rho $is the density of air.
Now, for calculation v, we can use the relation among frequency(f), tube length(l), and velocity of air(v), and that relation is:
$f = \dfrac{v}{{4l}}$,
On putting values and solving, we get,
$84 = \dfrac{v}{{4 \times 1}}$
On solving it we get v as,
$v = 84 \times 4 = 336m{s^{ - 1}}$
Putting all values in Newton’s formula, we get,
$336 = \sqrt {\dfrac{{\gamma \times 1.0 \times {{10}^5}}}{{1.2}}} $
Squaring on both sides, we get,
\[{\left( {336} \right)^2} = \dfrac{{\gamma \times {{10}^5}}}{{1.2}}\]
On further solving we get gamma as,
$
\gamma = \dfrac{{{{\left( {336} \right)}^2} \times 1.2}}{{{{10}^5}}} \\
\gamma \approx 1.35 \approx 1.4 \\
$
So, the correct option is (D).
Note: In the tubes that are open from one end and close at other end, at close end, amplitude of the wave will be minimum, that is, 0 and at the open end, amplitude of wave will be maximum, that’s why we use the formula $f = \dfrac{v}{{4l}}$, as the wavelength becomes 4 times of length of tube.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Average and RMS Value in Physics: Formula, Comparison & Application

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Electromagnetic Waves – Meaning, Types, Properties & Applications

Charging and Discharging of Capacitor Explained

What is the period of small oscillations of the block class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2026 Helpline Numbers for Aspiring Candidates

Free Radical Substitution and Its Stepwise Mechanism

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

