
For air at room temperature the atmospheric pressure is $1.0 \times {10^5}N{m^{ - 2}}$ and density of air is $1.2kg{m^{ - 3}}$. For a tube of length 1.0m closed at one end the lowest frequency generated is $84Hz$. The value of γ (ratio of two specific heats) for air is:
A) $2.1$
B) $1.5$
C) $1.8$
D) $1.4$
Answer
205.8k+ views
Hint: Use the Newton’s formula for speed of sound and laplace’s correction that establishes a relationship between speed of sound wrt pressure, temperature and ratio of specific heats.
Complete step by step answer:
We know that $v = \sqrt {\dfrac{{\gamma P}}{\rho }} $, (According to Newton’s formula for speed of sound)
Where v is the velocity of sound,
$\gamma $is the ratio of the two specific heats (${C_p}\& {C_v}$) of air,
P is the pressure and
$\rho $is the density of air.
Now, for calculation v, we can use the relation among frequency(f), tube length(l), and velocity of air(v), and that relation is:
$f = \dfrac{v}{{4l}}$,
On putting values and solving, we get,
$84 = \dfrac{v}{{4 \times 1}}$
On solving it we get v as,
$v = 84 \times 4 = 336m{s^{ - 1}}$
Putting all values in Newton’s formula, we get,
$336 = \sqrt {\dfrac{{\gamma \times 1.0 \times {{10}^5}}}{{1.2}}} $
Squaring on both sides, we get,
\[{\left( {336} \right)^2} = \dfrac{{\gamma \times {{10}^5}}}{{1.2}}\]
On further solving we get gamma as,
$
\gamma = \dfrac{{{{\left( {336} \right)}^2} \times 1.2}}{{{{10}^5}}} \\
\gamma \approx 1.35 \approx 1.4 \\
$
So, the correct option is (D).
Note: In the tubes that are open from one end and close at other end, at close end, amplitude of the wave will be minimum, that is, 0 and at the open end, amplitude of wave will be maximum, that’s why we use the formula $f = \dfrac{v}{{4l}}$, as the wavelength becomes 4 times of length of tube.
Complete step by step answer:
We know that $v = \sqrt {\dfrac{{\gamma P}}{\rho }} $, (According to Newton’s formula for speed of sound)
Where v is the velocity of sound,
$\gamma $is the ratio of the two specific heats (${C_p}\& {C_v}$) of air,
P is the pressure and
$\rho $is the density of air.
Now, for calculation v, we can use the relation among frequency(f), tube length(l), and velocity of air(v), and that relation is:
$f = \dfrac{v}{{4l}}$,
On putting values and solving, we get,
$84 = \dfrac{v}{{4 \times 1}}$
On solving it we get v as,
$v = 84 \times 4 = 336m{s^{ - 1}}$
Putting all values in Newton’s formula, we get,
$336 = \sqrt {\dfrac{{\gamma \times 1.0 \times {{10}^5}}}{{1.2}}} $
Squaring on both sides, we get,
\[{\left( {336} \right)^2} = \dfrac{{\gamma \times {{10}^5}}}{{1.2}}\]
On further solving we get gamma as,
$
\gamma = \dfrac{{{{\left( {336} \right)}^2} \times 1.2}}{{{{10}^5}}} \\
\gamma \approx 1.35 \approx 1.4 \\
$
So, the correct option is (D).
Note: In the tubes that are open from one end and close at other end, at close end, amplitude of the wave will be minimum, that is, 0 and at the open end, amplitude of wave will be maximum, that’s why we use the formula $f = \dfrac{v}{{4l}}$, as the wavelength becomes 4 times of length of tube.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

