
Find the value of the integral \[\int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \right)dx\].
$
{\text{A}}{\text{. }}{{\text{e}}^x}\left( {\cot x} \right) + c \\
{\text{B}}{\text{. }}{{\text{e}}^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right) + c \\
{\text{C}}{\text{. }}{{\text{e}}^x}\left( {{\text{cosecx}}} \right) + c \\
{\text{D}}{\text{. }} - {{\text{e}}^x}\left( {\cot x} \right) + c \\
$
Answer
217.5k+ views
Hint- Here, we will proceed by using the concept of integration by parts to solve the integral \[\int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx\] separately and then using the formula \[\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx = - \cos {\text{ec}}x\] to simplify the given integral whose value is required.
Complete step by step answer:
Let us then suppose the given integral be
\[
{\text{I}} = \int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \right)dx \\
\Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right) - {e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx \\
\Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx - \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx{\text{ }} \to {\text{(1)}} \\
\]
According to the formula of integration by parts (ILATE), the integral consisting of two different functions in variable x can be evaluated as under
\[\int {{\text{f}}\left( x \right)g\left( x \right)} dx = {\text{f}}\left( x \right)\left[ {\int {g\left( x \right)} dx} \right] - \int {\left\{ {\left[ {\dfrac{d}{{dx}}\left[ {{\text{f}}\left( x \right)} \right]} \right]\int {g\left( x \right)dx} } \right\}} dx + c{\text{ }} \to {\text{(2)}}\] where c is any constant of integration
where the functions \[{\text{f}}\left( x \right)\] and \[g\left( x \right)\] are arranged based on the priority basis according to ILATE
Considering the integral \[\int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx\] in equation (1) where the first function is \[f\left( x \right) = {e^x}\] and the second function is \[g\left( x \right) = \left( {{\text{cosecx}}} \right)\left( {\cot x} \right)\] and then solving it using the formula given by equation (2), we get
\[ \Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = {e^x}\left[ {\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx} \right] - \int {\left\{ {\left[ {\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right]\left[ {\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx} \right]} \right\}} dx + c\]
Using the formula \[\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx = - \cos {\text{ec}}x\], the above integral becomes
\[
\Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = {e^x}\left[ { - \cos {\text{ec}}x} \right] - \int {\left\{ {\left[ {{e^x}} \right]\left[ { - \cos {\text{ec}}x} \right]} \right\}} dx + c \\
\Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = - {e^x}\left( {\cos {\text{ec}}x} \right) + \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx + c{\text{ }} \to {\text{(3)}} \\
\]
By substituting equation (3) in equation (1), we get
\[
\Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx - \left[ { - {e^x}\left( {\cos {\text{ec}}x} \right) + \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx} \right] + c \\
\Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx + {e^x}\left( {\cos {\text{ec}}x} \right) - \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx + c \\
\Rightarrow {\text{I}} = {e^x}\left( {\cos {\text{ec}}x} \right) + c \\
\]
Therefore, the integral \[\int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \right)dx = {e^x}\left( {\cos {\text{ec}}x} \right) + c\]
Hence, option C is correct.
Note- In the method of integration by parts (ILATE), I refers to inverse trigonometric function, L refers to logarithmic function, A refers to algebraic function, T refers to trigonometric function and E refers to exponential function. In this problem, the first function is taken as ${e^x}$ and the second function as \[\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)\] so that the required integral can be solved conveniently.
Complete step by step answer:
Let us then suppose the given integral be
\[
{\text{I}} = \int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \right)dx \\
\Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right) - {e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx \\
\Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx - \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx{\text{ }} \to {\text{(1)}} \\
\]
According to the formula of integration by parts (ILATE), the integral consisting of two different functions in variable x can be evaluated as under
\[\int {{\text{f}}\left( x \right)g\left( x \right)} dx = {\text{f}}\left( x \right)\left[ {\int {g\left( x \right)} dx} \right] - \int {\left\{ {\left[ {\dfrac{d}{{dx}}\left[ {{\text{f}}\left( x \right)} \right]} \right]\int {g\left( x \right)dx} } \right\}} dx + c{\text{ }} \to {\text{(2)}}\] where c is any constant of integration
where the functions \[{\text{f}}\left( x \right)\] and \[g\left( x \right)\] are arranged based on the priority basis according to ILATE
Considering the integral \[\int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx\] in equation (1) where the first function is \[f\left( x \right) = {e^x}\] and the second function is \[g\left( x \right) = \left( {{\text{cosecx}}} \right)\left( {\cot x} \right)\] and then solving it using the formula given by equation (2), we get
\[ \Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = {e^x}\left[ {\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx} \right] - \int {\left\{ {\left[ {\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right]\left[ {\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx} \right]} \right\}} dx + c\]
Using the formula \[\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx = - \cos {\text{ec}}x\], the above integral becomes
\[
\Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = {e^x}\left[ { - \cos {\text{ec}}x} \right] - \int {\left\{ {\left[ {{e^x}} \right]\left[ { - \cos {\text{ec}}x} \right]} \right\}} dx + c \\
\Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = - {e^x}\left( {\cos {\text{ec}}x} \right) + \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx + c{\text{ }} \to {\text{(3)}} \\
\]
By substituting equation (3) in equation (1), we get
\[
\Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx - \left[ { - {e^x}\left( {\cos {\text{ec}}x} \right) + \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx} \right] + c \\
\Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx + {e^x}\left( {\cos {\text{ec}}x} \right) - \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx + c \\
\Rightarrow {\text{I}} = {e^x}\left( {\cos {\text{ec}}x} \right) + c \\
\]
Therefore, the integral \[\int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \right)dx = {e^x}\left( {\cos {\text{ec}}x} \right) + c\]
Hence, option C is correct.
Note- In the method of integration by parts (ILATE), I refers to inverse trigonometric function, L refers to logarithmic function, A refers to algebraic function, T refers to trigonometric function and E refers to exponential function. In this problem, the first function is taken as ${e^x}$ and the second function as \[\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)\] so that the required integral can be solved conveniently.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

