
Find the locus of the middle points of the chords of parabola${{y}^{2}}=8x$ if slope of the chords be 4?
a) $y=2$
b) $y+x=1$
c) $y=1$
d) $y=0$
Answer
135.9k+ views
Hint: Consider the points on parabola in the form of$(a{{t}^{2}},2at)$ and find the equation of line using the two points taken on parabola.
Complete step-by-step solution -
Let the given parabola ${{y}^{2}}=4ax$ has a chord, which cuts parabola at $(a{{t}_{1}}^{2},2a{{t}_{1}})$& $(a{{t}_{2}}^{2},2a{{t}_{2}})$ .

Let the given midpoint of chord AB be$\left( h,k \right)$ .
We know midpoint of a line joining two point $\left( x,y \right)\And \left( m,n \right)$ =$\left( \dfrac{x+m}{2},\dfrac{y+n}{2} \right)$ .
$h=\left( \dfrac{a{{t}^{2}}_{1}+a{{t}^{2}}_{2}}{2} \right)$ & $k=\left( \dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2} \right)$
$h=\dfrac{a}{2}\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)$ …(1)
& $k=a\left( {{t}_{1}}+{{t}_{2}} \right)$ …(2)
Now,
$2h=a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)$
Now manipulating it as ${{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ ,
$2h=a{{\left( ({{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}})$
From equation (2).
$\begin{align}
& 2h=a\left( {{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\
& 2h=a\left( {{\dfrac{k}{{{a}^{2}}}}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\
\end{align}$
${{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}$ …(3)
Now find the equation of chord passing through two point at $(a{{t}_{1}}^{2},2a{{t}_{1}})$& $(a{{t}_{2}}^{2},2a{{t}_{2}})$ .
Using two point formula of equation of line $y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{1}}-{{x}_{1}}}\left( x-{{x}_{1}} \right)$ .
Then,
$y-2a{{t}_{1}}=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{a{{t}^{2}}_{2}-a{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right)$
Taking a common from numerator and denominator & then expand denominator $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ .
$\begin{align}
& y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{{{t}^{2}}_{2}-{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right) \\
& y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{({{t}_{2}}+{{t}_{1}})\left( {{t}_{2}}-{{t}_{1}} \right)}\left( x-a{{t}^{2}}_{1} \right) \\
& y-2a{{t}_{1}}=\dfrac{2}{({{t}_{2}}+{{t}_{1}})}\left( x-a{{t}^{2}}_{1} \right) \\
& (y-2a{{t}_{1}})({{t}_{2}}+{{t}_{1}})=2\left( x-a{{t}^{2}}_{1} \right) \\
& y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}-2a{{t}^{2}}_{1}=2x-2a{{t}^{2}}_{1} \\
\end{align}$
$-2a{{t}^{2}}_{1}$ will be cancel out from both side
Then, we get
$\begin{align}
& y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x \\
& \\
\end{align}$
Equation of chord will be:
$y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{2a{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}$ …(4)
Now,
Parabola equation given: ${{y}^{2}}=8x$
Comparing with the standard equation, we get $a=2$ .
Then equation of chord after putting value of a:
$y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{4{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}$
Slope of chord $=4$ (given in the question)
$\dfrac{2}{({{t}_{2}}+{{t}_{1}})}=4$ (from equation (4) comparing with the general equation of line $y=mx+c$ )
From equation (2)
$\begin{align}
& \dfrac{2}{\dfrac{k}{2}}=2 \\
& \dfrac{2}{k}=2 \\
& k=1 \\
\end{align}$
Replace k with $y$, we get
$y=1$
Hence, option c) is true.
Note: We can use direct formula to find the equation of tangent taking two arbitrary point on a parabola by using direct formula $y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x$. In this question writing the equation of tangent in the form of $y=mx+c$ as slope $'m'$ is given in the question.
Complete step-by-step solution -
Let the given parabola ${{y}^{2}}=4ax$ has a chord, which cuts parabola at $(a{{t}_{1}}^{2},2a{{t}_{1}})$& $(a{{t}_{2}}^{2},2a{{t}_{2}})$ .

Let the given midpoint of chord AB be$\left( h,k \right)$ .
We know midpoint of a line joining two point $\left( x,y \right)\And \left( m,n \right)$ =$\left( \dfrac{x+m}{2},\dfrac{y+n}{2} \right)$ .
$h=\left( \dfrac{a{{t}^{2}}_{1}+a{{t}^{2}}_{2}}{2} \right)$ & $k=\left( \dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2} \right)$
$h=\dfrac{a}{2}\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)$ …(1)
& $k=a\left( {{t}_{1}}+{{t}_{2}} \right)$ …(2)
Now,
$2h=a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)$
Now manipulating it as ${{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ ,
$2h=a{{\left( ({{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}})$
From equation (2).
$\begin{align}
& 2h=a\left( {{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\
& 2h=a\left( {{\dfrac{k}{{{a}^{2}}}}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\
\end{align}$
${{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}$ …(3)
Now find the equation of chord passing through two point at $(a{{t}_{1}}^{2},2a{{t}_{1}})$& $(a{{t}_{2}}^{2},2a{{t}_{2}})$ .
Using two point formula of equation of line $y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{1}}-{{x}_{1}}}\left( x-{{x}_{1}} \right)$ .
Then,
$y-2a{{t}_{1}}=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{a{{t}^{2}}_{2}-a{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right)$
Taking a common from numerator and denominator & then expand denominator $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ .
$\begin{align}
& y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{{{t}^{2}}_{2}-{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right) \\
& y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{({{t}_{2}}+{{t}_{1}})\left( {{t}_{2}}-{{t}_{1}} \right)}\left( x-a{{t}^{2}}_{1} \right) \\
& y-2a{{t}_{1}}=\dfrac{2}{({{t}_{2}}+{{t}_{1}})}\left( x-a{{t}^{2}}_{1} \right) \\
& (y-2a{{t}_{1}})({{t}_{2}}+{{t}_{1}})=2\left( x-a{{t}^{2}}_{1} \right) \\
& y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}-2a{{t}^{2}}_{1}=2x-2a{{t}^{2}}_{1} \\
\end{align}$
$-2a{{t}^{2}}_{1}$ will be cancel out from both side
Then, we get
$\begin{align}
& y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x \\
& \\
\end{align}$
Equation of chord will be:
$y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{2a{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}$ …(4)
Now,
Parabola equation given: ${{y}^{2}}=8x$
Comparing with the standard equation, we get $a=2$ .
Then equation of chord after putting value of a:
$y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{4{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}$
Slope of chord $=4$ (given in the question)
$\dfrac{2}{({{t}_{2}}+{{t}_{1}})}=4$ (from equation (4) comparing with the general equation of line $y=mx+c$ )
From equation (2)
$\begin{align}
& \dfrac{2}{\dfrac{k}{2}}=2 \\
& \dfrac{2}{k}=2 \\
& k=1 \\
\end{align}$
Replace k with $y$, we get
$y=1$
Hence, option c) is true.
Note: We can use direct formula to find the equation of tangent taking two arbitrary point on a parabola by using direct formula $y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x$. In this question writing the equation of tangent in the form of $y=mx+c$ as slope $'m'$ is given in the question.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Collision - Important Concepts and Tips for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 13 Statistics

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 14 Probability
