
Find the locus of the middle points of the chords of parabola${{y}^{2}}=8x$ if slope of the chords be 4?
a) $y=2$
b) $y+x=1$
c) $y=1$
d) $y=0$
Answer
216.6k+ views
Hint: Consider the points on parabola in the form of$(a{{t}^{2}},2at)$ and find the equation of line using the two points taken on parabola.
Complete step-by-step solution -
Let the given parabola ${{y}^{2}}=4ax$ has a chord, which cuts parabola at $(a{{t}_{1}}^{2},2a{{t}_{1}})$& $(a{{t}_{2}}^{2},2a{{t}_{2}})$ .

Let the given midpoint of chord AB be$\left( h,k \right)$ .
We know midpoint of a line joining two point $\left( x,y \right)\And \left( m,n \right)$ =$\left( \dfrac{x+m}{2},\dfrac{y+n}{2} \right)$ .
$h=\left( \dfrac{a{{t}^{2}}_{1}+a{{t}^{2}}_{2}}{2} \right)$ & $k=\left( \dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2} \right)$
$h=\dfrac{a}{2}\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)$ …(1)
& $k=a\left( {{t}_{1}}+{{t}_{2}} \right)$ …(2)
Now,
$2h=a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)$
Now manipulating it as ${{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ ,
$2h=a{{\left( ({{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}})$
From equation (2).
$\begin{align}
& 2h=a\left( {{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\
& 2h=a\left( {{\dfrac{k}{{{a}^{2}}}}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\
\end{align}$
${{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}$ …(3)
Now find the equation of chord passing through two point at $(a{{t}_{1}}^{2},2a{{t}_{1}})$& $(a{{t}_{2}}^{2},2a{{t}_{2}})$ .
Using two point formula of equation of line $y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{1}}-{{x}_{1}}}\left( x-{{x}_{1}} \right)$ .
Then,
$y-2a{{t}_{1}}=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{a{{t}^{2}}_{2}-a{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right)$
Taking a common from numerator and denominator & then expand denominator $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ .
$\begin{align}
& y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{{{t}^{2}}_{2}-{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right) \\
& y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{({{t}_{2}}+{{t}_{1}})\left( {{t}_{2}}-{{t}_{1}} \right)}\left( x-a{{t}^{2}}_{1} \right) \\
& y-2a{{t}_{1}}=\dfrac{2}{({{t}_{2}}+{{t}_{1}})}\left( x-a{{t}^{2}}_{1} \right) \\
& (y-2a{{t}_{1}})({{t}_{2}}+{{t}_{1}})=2\left( x-a{{t}^{2}}_{1} \right) \\
& y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}-2a{{t}^{2}}_{1}=2x-2a{{t}^{2}}_{1} \\
\end{align}$
$-2a{{t}^{2}}_{1}$ will be cancel out from both side
Then, we get
$\begin{align}
& y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x \\
& \\
\end{align}$
Equation of chord will be:
$y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{2a{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}$ …(4)
Now,
Parabola equation given: ${{y}^{2}}=8x$
Comparing with the standard equation, we get $a=2$ .
Then equation of chord after putting value of a:
$y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{4{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}$
Slope of chord $=4$ (given in the question)
$\dfrac{2}{({{t}_{2}}+{{t}_{1}})}=4$ (from equation (4) comparing with the general equation of line $y=mx+c$ )
From equation (2)
$\begin{align}
& \dfrac{2}{\dfrac{k}{2}}=2 \\
& \dfrac{2}{k}=2 \\
& k=1 \\
\end{align}$
Replace k with $y$, we get
$y=1$
Hence, option c) is true.
Note: We can use direct formula to find the equation of tangent taking two arbitrary point on a parabola by using direct formula $y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x$. In this question writing the equation of tangent in the form of $y=mx+c$ as slope $'m'$ is given in the question.
Complete step-by-step solution -
Let the given parabola ${{y}^{2}}=4ax$ has a chord, which cuts parabola at $(a{{t}_{1}}^{2},2a{{t}_{1}})$& $(a{{t}_{2}}^{2},2a{{t}_{2}})$ .

Let the given midpoint of chord AB be$\left( h,k \right)$ .
We know midpoint of a line joining two point $\left( x,y \right)\And \left( m,n \right)$ =$\left( \dfrac{x+m}{2},\dfrac{y+n}{2} \right)$ .
$h=\left( \dfrac{a{{t}^{2}}_{1}+a{{t}^{2}}_{2}}{2} \right)$ & $k=\left( \dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2} \right)$
$h=\dfrac{a}{2}\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)$ …(1)
& $k=a\left( {{t}_{1}}+{{t}_{2}} \right)$ …(2)
Now,
$2h=a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)$
Now manipulating it as ${{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ ,
$2h=a{{\left( ({{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}})$
From equation (2).
$\begin{align}
& 2h=a\left( {{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\
& 2h=a\left( {{\dfrac{k}{{{a}^{2}}}}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\
\end{align}$
${{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}$ …(3)
Now find the equation of chord passing through two point at $(a{{t}_{1}}^{2},2a{{t}_{1}})$& $(a{{t}_{2}}^{2},2a{{t}_{2}})$ .
Using two point formula of equation of line $y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{1}}-{{x}_{1}}}\left( x-{{x}_{1}} \right)$ .
Then,
$y-2a{{t}_{1}}=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{a{{t}^{2}}_{2}-a{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right)$
Taking a common from numerator and denominator & then expand denominator $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ .
$\begin{align}
& y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{{{t}^{2}}_{2}-{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right) \\
& y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{({{t}_{2}}+{{t}_{1}})\left( {{t}_{2}}-{{t}_{1}} \right)}\left( x-a{{t}^{2}}_{1} \right) \\
& y-2a{{t}_{1}}=\dfrac{2}{({{t}_{2}}+{{t}_{1}})}\left( x-a{{t}^{2}}_{1} \right) \\
& (y-2a{{t}_{1}})({{t}_{2}}+{{t}_{1}})=2\left( x-a{{t}^{2}}_{1} \right) \\
& y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}-2a{{t}^{2}}_{1}=2x-2a{{t}^{2}}_{1} \\
\end{align}$
$-2a{{t}^{2}}_{1}$ will be cancel out from both side
Then, we get
$\begin{align}
& y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x \\
& \\
\end{align}$
Equation of chord will be:
$y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{2a{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}$ …(4)
Now,
Parabola equation given: ${{y}^{2}}=8x$
Comparing with the standard equation, we get $a=2$ .
Then equation of chord after putting value of a:
$y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{4{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}$
Slope of chord $=4$ (given in the question)
$\dfrac{2}{({{t}_{2}}+{{t}_{1}})}=4$ (from equation (4) comparing with the general equation of line $y=mx+c$ )
From equation (2)
$\begin{align}
& \dfrac{2}{\dfrac{k}{2}}=2 \\
& \dfrac{2}{k}=2 \\
& k=1 \\
\end{align}$
Replace k with $y$, we get
$y=1$
Hence, option c) is true.
Note: We can use direct formula to find the equation of tangent taking two arbitrary point on a parabola by using direct formula $y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x$. In this question writing the equation of tangent in the form of $y=mx+c$ as slope $'m'$ is given in the question.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

