
\[Cu(s) + 2A{g^ + }(aq.) \to C{u^{2 + }}(aq.) + 2Ag(s)\]. In the given reaction, the reduction half-cell reaction is:
(a) \[C{u^{2 + }} + 2{e^ - } \to Cu\]
(b) \[Cu - 2{e^ - } \to C{u^{2 + }}\]
(c) \[A{g^ + } + {e^ - } \to Ag\]
(d) \[Ag - {e^ - } \to A{g^ + }\]
Answer
163.5k+ views
Hint: An electrochemical cell consists of a negative (anode) and a positive (cathode) electrode respectively which are immersed in an electrolyte. The oxidation occurs at the anode whereas the reduction occurs at the cathode.
Complete Step by Step Solution:
A galvanic cell is also known as an electrochemical cell
Notation of a galvanic cell:
In a galvanic cell, \[Cu\]undergoes oxidation to \[C{u^{2 + }}\] at the anode and \[A{g^ + }\] to \[Ag\] at the cathode.
In an electrochemical cell notation, the oxidation half-reaction is used first followed by the reduction half-reaction.
Therefore, the oxidation half-reaction at the anode can be represented as below.
\[Cu(s) \to C{u^{2 + }}(aq.) + 2{e^ - }\] (1)
The reduction half-reaction at the cathode can be represented as below.
\[A{g^ + }(aq.) + {e^ - } \to Ag(s)\] (2)
Hence, the standard cell notation for a galvanic cell can be shown as below.
\[Cu(s)|C{u^{2 + }}(aq.)||A{g^ + }_{}(aq.)|Ag(s)\] (3)
Flow of current in galvanic cells: We all know that current always flows opposite to the flow of electrons. Therefore, the galvanic cell notation represents that loss of electron or oxidation occurs at the anode. Whereas gain of electron or reduction takes place at the cathode i.e., the electron is flowing from anode to cathode. Therefore, the current will flow opposite to the electron current (from anode to cathode).
The half-cell reaction of a galvanic cell can be represented as:
At Anode: \[Cu(s) \to C{u^{2 + }}(aq.) + 2{e^ - }\]
At cathode: \[A{g^ + }(aq.) + {e^ - } \to Ag(s)\]
From the cell reaction, it is also clear that option C will be the correct answer.
Note: According to the Nernst equation on increasing the temperature, the voltage of the galvanic cell will decrease i.e voltage of the galvanic cell is inversely proportional to the temperature.
Complete Step by Step Solution:
A galvanic cell is also known as an electrochemical cell
Notation of a galvanic cell:
In a galvanic cell, \[Cu\]undergoes oxidation to \[C{u^{2 + }}\] at the anode and \[A{g^ + }\] to \[Ag\] at the cathode.
In an electrochemical cell notation, the oxidation half-reaction is used first followed by the reduction half-reaction.
Therefore, the oxidation half-reaction at the anode can be represented as below.
\[Cu(s) \to C{u^{2 + }}(aq.) + 2{e^ - }\] (1)
The reduction half-reaction at the cathode can be represented as below.
\[A{g^ + }(aq.) + {e^ - } \to Ag(s)\] (2)
Hence, the standard cell notation for a galvanic cell can be shown as below.
\[Cu(s)|C{u^{2 + }}(aq.)||A{g^ + }_{}(aq.)|Ag(s)\] (3)
Flow of current in galvanic cells: We all know that current always flows opposite to the flow of electrons. Therefore, the galvanic cell notation represents that loss of electron or oxidation occurs at the anode. Whereas gain of electron or reduction takes place at the cathode i.e., the electron is flowing from anode to cathode. Therefore, the current will flow opposite to the electron current (from anode to cathode).
The half-cell reaction of a galvanic cell can be represented as:
At Anode: \[Cu(s) \to C{u^{2 + }}(aq.) + 2{e^ - }\]
At cathode: \[A{g^ + }(aq.) + {e^ - } \to Ag(s)\]
From the cell reaction, it is also clear that option C will be the correct answer.
Note: According to the Nernst equation on increasing the temperature, the voltage of the galvanic cell will decrease i.e voltage of the galvanic cell is inversely proportional to the temperature.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Classification of Drugs

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Chemistry Online Mock Test for Class 12

Other Pages
Haloalkanes and Haloarenes

Alcohol Phenol and Ether Class 12 Notes: CBSE Chemistry Chapter 7

Coordination Compounds Class 12 Notes: CBSE Chemistry Chapter 5

NCERT Solutions for Class 12 Chemistry In Hindi Chapter 10 Haloalkanes and Haloarenes In Hindi Mediem

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates
