
Consider the function \[y=f\left( x \right)\] defined parametrically by \[x=2t-\left| t \right|,y={{t}^{2}}+t\left| t \right|,t\ in \mathbb{R}\]. Then in the interval \[-1\le x\le 1\], the number of points at which \[f\left( x \right)\] is not differentiable is ____.
Answer
232.8k+ views
Hint: To find the point at which the function \[f\left( x \right)\] is not differentiable, find all possible values of \[t\] which satisfy the given conditions and then write the function by eliminating the variable \[t\] and check the differentiability of the function in the possible domain.
We have a function \[y=f\left( x \right)\] which is defined parametrically by \[x=2t-\left|t \right|,y={{t}^{2}}+t\left| t \right|,t\ in \mathbb{R}\]
We want to find the number of points at which the given function is not differentiable.
Hence, we will begin by writing the exact function by eliminating the variable \[t\].
Consider the case when \[t\ge 0\]. Thus, we have \[x=2t-\left| t \right|=2t-t=t\] and \[y={{t}^{2}}+t\left| t \right|={{t}^{2}}+{{t}^{2}}=2{{t}^{2}}\].
We want the condition that \[-1\le x\le 1\]. Thus, we have \[-1\le t\le 1\]. But, we are only considering the values for \[t\ge 0\].
Hence, we need that \[0\le t\le 1\] such that \[x=t,y=2{{t}^{2}}\].
By eliminating the variable \[t\], we have \[x=t,y=2{{t}^{2}}\] for \[0\le t\le 1\].
Now, we will consider the case when \[t\le 0\]. Thus, we have \[x=2t-\left| t \right|=2t+t=3t\] and \[y={{t}^{2}}+t\left| t \right|={{t}^{2}}-{{t}^{2}}=0\].
We want the condition that \[-1\le x\le 1\]. Thus, we have \[\dfrac{-1}{3}\le t\le \dfrac{1}{3}\]. But, we are only considering the values for \[t\le 0\].
Hence, we need that \[\dfrac{-1}{3}\le t\le 0\] such that \[x=3t,y=0\].
Thus, we have \[y=0,x=3t\] for \[\dfrac{-1}{3}\le t\le 0\].
Now, we will test the differentiability of the function \[y=f\left( x \right)\].
We observe that for \[\dfrac{-1}{3}\le t<0\], we have \[y=0,x=3t\]. Thus, the functions \[x\left( t \right)\] and \[y\left( t \right)\] are both polynomials.
We know that polynomials are always differentiable in the given range. Hence, there’s no point in the given range at which the functions are not differentiable.
Similarly, for range \[0We know that polynomials are always differentiable in the given range. Hence, there’s no point in the given range at which the functions are not differentiable.
Now, we need to check the differentiability around the point \[t=0\].
We know that a function \[y=f\left( x \right)\] is differentiable around a point \[x=a\] if \[f'\left( {{a}^{-}} \right)=f'\left( {{a}^{+}} \right)=f'\left( a \right)\].
For\[t=0\], we have \[y=0,x=3t\] for \[t<0\] and \[x=t,y=2{{t}^{2}}\]for\[t>0\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
For \[t<0\], we have \[\dfrac{dy}{dt}=\dfrac{d\left( 0 \right)}{dt}=0,\dfrac{dx}{dt}=\dfrac{d\left( 3t \right)}{dt}=3\].
For \[t<0\], we have \[\dfrac{dy}{dt}=\dfrac{d\left( 2{{t}^{2}} \right)}{dt}=4t,\dfrac{dx}{dt}=\dfrac{d\left( t \right)}{dt}=1\].
As \[t\to 0\], we have \[\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)=\left( 0,3 \right)\] for \[t<0\].
As \[t\to 0\], we have \[\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)=\left( 0,1 \right)\] for \[t>0\].
Hence, we observe that \[{{\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)}_{t\to {{0}^{-}}}}\ne {{\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)}_{t\to {{0}^{+}}}}\].
Thus, the function \[y=f\left( x \right)\] is not differentiable at \[t=0\].
Hence, the number of points of non-differentiability of the function is \[1\].
Note: It’s very necessary to observe the domain of possible points. We can’t define the function beyond the possible domain.
We have a function \[y=f\left( x \right)\] which is defined parametrically by \[x=2t-\left|t \right|,y={{t}^{2}}+t\left| t \right|,t\ in \mathbb{R}\]
We want to find the number of points at which the given function is not differentiable.
Hence, we will begin by writing the exact function by eliminating the variable \[t\].
Consider the case when \[t\ge 0\]. Thus, we have \[x=2t-\left| t \right|=2t-t=t\] and \[y={{t}^{2}}+t\left| t \right|={{t}^{2}}+{{t}^{2}}=2{{t}^{2}}\].
We want the condition that \[-1\le x\le 1\]. Thus, we have \[-1\le t\le 1\]. But, we are only considering the values for \[t\ge 0\].
Hence, we need that \[0\le t\le 1\] such that \[x=t,y=2{{t}^{2}}\].
By eliminating the variable \[t\], we have \[x=t,y=2{{t}^{2}}\] for \[0\le t\le 1\].
Now, we will consider the case when \[t\le 0\]. Thus, we have \[x=2t-\left| t \right|=2t+t=3t\] and \[y={{t}^{2}}+t\left| t \right|={{t}^{2}}-{{t}^{2}}=0\].
We want the condition that \[-1\le x\le 1\]. Thus, we have \[\dfrac{-1}{3}\le t\le \dfrac{1}{3}\]. But, we are only considering the values for \[t\le 0\].
Hence, we need that \[\dfrac{-1}{3}\le t\le 0\] such that \[x=3t,y=0\].
Thus, we have \[y=0,x=3t\] for \[\dfrac{-1}{3}\le t\le 0\].
Now, we will test the differentiability of the function \[y=f\left( x \right)\].
We observe that for \[\dfrac{-1}{3}\le t<0\], we have \[y=0,x=3t\]. Thus, the functions \[x\left( t \right)\] and \[y\left( t \right)\] are both polynomials.
We know that polynomials are always differentiable in the given range. Hence, there’s no point in the given range at which the functions are not differentiable.
Similarly, for range \[0
Now, we need to check the differentiability around the point \[t=0\].
We know that a function \[y=f\left( x \right)\] is differentiable around a point \[x=a\] if \[f'\left( {{a}^{-}} \right)=f'\left( {{a}^{+}} \right)=f'\left( a \right)\].
For\[t=0\], we have \[y=0,x=3t\] for \[t<0\] and \[x=t,y=2{{t}^{2}}\]for\[t>0\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
For \[t<0\], we have \[\dfrac{dy}{dt}=\dfrac{d\left( 0 \right)}{dt}=0,\dfrac{dx}{dt}=\dfrac{d\left( 3t \right)}{dt}=3\].
For \[t<0\], we have \[\dfrac{dy}{dt}=\dfrac{d\left( 2{{t}^{2}} \right)}{dt}=4t,\dfrac{dx}{dt}=\dfrac{d\left( t \right)}{dt}=1\].
As \[t\to 0\], we have \[\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)=\left( 0,3 \right)\] for \[t<0\].
As \[t\to 0\], we have \[\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)=\left( 0,1 \right)\] for \[t>0\].
Hence, we observe that \[{{\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)}_{t\to {{0}^{-}}}}\ne {{\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)}_{t\to {{0}^{+}}}}\].
Thus, the function \[y=f\left( x \right)\] is not differentiable at \[t=0\].
Hence, the number of points of non-differentiability of the function is \[1\].
Note: It’s very necessary to observe the domain of possible points. We can’t define the function beyond the possible domain.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

