
Colour of light depends upon
(A) Wavelength
(B) Speed of light
(C) Both (A) and (D)
(D) Frequency
Answer
154.2k+ views
Hint We will find that colour of light depends upon which wavelength or speed of light or frequency or both wavelength and frequency. For this we will first understand what is visible light and how it contains different wavelengths.
After that we will understand how light is emitted by an object and how it is dependent on wavelength and absorption of colours and reflection of colours.
Then we will understand the relation between wavelength and frequency and then we will find out whether the colour of light is dependent upon frequency or not.
Then we will be able to choose the correct option.
Complete step by step solution
So, we first understand visible light, it is the small part within the electromagnetic spectrum that human eyes are sensitive to and can detect.
Visible light waves consist of different wavelengths. The colour of visible light is dependent on its wavelength. These wavelengths range from 700nm at the red end of the spectrum to 400nm at the violet end.
Now we understand how an object emits colour. Objects appear different colours because they absorb some colours (wavelength) and reflect or transmit other colours. The colours that we see are the wavelengths that are reflected or transmitted by the object.
So by the above concept we can understand that colour of light depends upon wavelength. Also the wavelength and frequency of light are closely related. The higher the frequency,the shorter the wavelength.
The equation that relates wavelength and frequency for electromagnetic waves is: \[\lambda \nu = c\] where \[\lambda \] is the wavelength, v is the frequency and c is the speed of light.
So by these we can say that colour of light depends upon wavelength and frequency both.
Hence option C is correct.
Note Always be careful that more than one option can be correct, so we have seen all the options.
Also remember that red light has the greatest frequency in the optical range and can be seen from a far distance, that’s why ambulance, traffic lights use red light.
The colour of visible light depends on its wavelength. These wavelengths range from 700nm at the red end of the spectrum to 400nm at the violet end.
After that we will understand how light is emitted by an object and how it is dependent on wavelength and absorption of colours and reflection of colours.
Then we will understand the relation between wavelength and frequency and then we will find out whether the colour of light is dependent upon frequency or not.
Then we will be able to choose the correct option.
Complete step by step solution
So, we first understand visible light, it is the small part within the electromagnetic spectrum that human eyes are sensitive to and can detect.
Visible light waves consist of different wavelengths. The colour of visible light is dependent on its wavelength. These wavelengths range from 700nm at the red end of the spectrum to 400nm at the violet end.
Now we understand how an object emits colour. Objects appear different colours because they absorb some colours (wavelength) and reflect or transmit other colours. The colours that we see are the wavelengths that are reflected or transmitted by the object.
So by the above concept we can understand that colour of light depends upon wavelength. Also the wavelength and frequency of light are closely related. The higher the frequency,the shorter the wavelength.
The equation that relates wavelength and frequency for electromagnetic waves is: \[\lambda \nu = c\] where \[\lambda \] is the wavelength, v is the frequency and c is the speed of light.
So by these we can say that colour of light depends upon wavelength and frequency both.
Hence option C is correct.
Note Always be careful that more than one option can be correct, so we have seen all the options.
Also remember that red light has the greatest frequency in the optical range and can be seen from a far distance, that’s why ambulance, traffic lights use red light.
The colour of visible light depends on its wavelength. These wavelengths range from 700nm at the red end of the spectrum to 400nm at the violet end.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Wheatstone Bridge for JEE Main Physics 2025

The force of interaction of two dipoles if the two class 12 physics JEE_Main

Three charges sqrt 2 mu C2sqrt 2 mu Cand sqrt 2 mu class 12 physics JEE_Main

The potential of A is 10V then the potential of B is class 12 physics JEE_Main

Other Pages
JEE Advanced 2025 Revision Notes for Mechanics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An uncharged sphere of metal is placed inside a charged class 12 physics JEE_Main

Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

A signal of 5kHz frequency is amplitude modulated on class 12 physics JEE_Main
