
Assertion
The sum of two vectors may be zero.
Reason
The vector cancels each other, when they are equal and opposite.
A) Both assertion and reason are correct and the reason is the correct clarification for the assertion.
B) Both assertion and reason are correct and the reason isn't the right clarification for the assertion.
C) Assertion is correct however the reason is wrong.
D) Both assertion and reason are wrong.
Answer
162k+ views
Hint:
In this question, we have given that if there are two vectors, then their sum may be zero. Therefore, the Sum of the two vectors may be zero only when both the vectors are opposite in direction to each other but should have the same magnitude. And then choose the correct option.
Formula used:
1) \[\begin{array}{*{20}{c}}
R& = &{\sqrt {{{\left( A \right)}^2} + {{\left( B \right)}^2} + 2AB\cos \theta } }
\end{array}\]
Complete step by step solution:
Let us assume that there are two vectors \[\overrightarrow A \]and \[\overrightarrow B \]respectively. Vectors have an equivalent magnitude but are in the opposite direction. These vectors are on the same axis but are in opposite directions as shown in the figure. The resultant or sum of the vectors is \[R\].
Now suppose that the magnitude of both the vectors are unit.

Figure 1
Now according to the given figure 1, the angle between the vectors is \[{180^ \circ }\].
Now, we know that
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &{\sqrt {{{\left( A \right)}^2} + {{\left( B \right)}^2} + 2AB\cos \theta } }
\end{array}\]
Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + 2 \times 1 \times 1 \times \cos {{180}^ \circ }} }
\end{array}\]
From the trigonometric table, we know that the value of \[\cos {180^ \circ }\]is \[ - 1\].
Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + 2 \times 1 \times 1 \times \left( { - 1} \right)} }
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &{\sqrt {2 - 2} }
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &0
\end{array}\].
From the above result, we can conclude that the sum of the two vectors may be zero if they are in opposite directions and have the same magnitude.
Therefore, the assertion and the reason both are the right and the reason is the right clarification of the assertion.
Therefore, the correct option is A.
Note:
The first point is to keep in mind that if the vectors are in opposite directions and lie on the same axis, then the angle between them will be \[{180^ \circ }\].
In this question, we have given that if there are two vectors, then their sum may be zero. Therefore, the Sum of the two vectors may be zero only when both the vectors are opposite in direction to each other but should have the same magnitude. And then choose the correct option.
Formula used:
1) \[\begin{array}{*{20}{c}}
R& = &{\sqrt {{{\left( A \right)}^2} + {{\left( B \right)}^2} + 2AB\cos \theta } }
\end{array}\]
Complete step by step solution:
Let us assume that there are two vectors \[\overrightarrow A \]and \[\overrightarrow B \]respectively. Vectors have an equivalent magnitude but are in the opposite direction. These vectors are on the same axis but are in opposite directions as shown in the figure. The resultant or sum of the vectors is \[R\].
Now suppose that the magnitude of both the vectors are unit.

Figure 1
Now according to the given figure 1, the angle between the vectors is \[{180^ \circ }\].
Now, we know that
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &{\sqrt {{{\left( A \right)}^2} + {{\left( B \right)}^2} + 2AB\cos \theta } }
\end{array}\]
Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + 2 \times 1 \times 1 \times \cos {{180}^ \circ }} }
\end{array}\]
From the trigonometric table, we know that the value of \[\cos {180^ \circ }\]is \[ - 1\].
Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + 2 \times 1 \times 1 \times \left( { - 1} \right)} }
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &{\sqrt {2 - 2} }
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
R& = &0
\end{array}\].
From the above result, we can conclude that the sum of the two vectors may be zero if they are in opposite directions and have the same magnitude.
Therefore, the assertion and the reason both are the right and the reason is the right clarification of the assertion.
Therefore, the correct option is A.
Note:
The first point is to keep in mind that if the vectors are in opposite directions and lie on the same axis, then the angle between them will be \[{180^ \circ }\].
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Class 11 JEE Main Physics Mock Test 2025

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
