
What are the 3rd, 5th, and 7th harmonics?
Answer
218.7k+ views
Hint: In this question, we need to explain the concept of 3rd, 5th and 7th harmonics. For this, first, we will understand what harmonics is. After that only, we can understand the terms like 3rd, 5th, and 7th harmonics.
Complete step by step solution:
We know that the harmonics are defined as the integral multiples of the fundamental frequency, also known as the main frequency. The fundamental frequencies are multiplied by a positive integer multiple.
Now, we will understand the 3rd, 5th, and 7th harmonics. The third harmonic is now three times the fundamental frequency. It is commonly referred to as the second overtone in a sound instrument such as organ pipes that produce sound by blowing into a pipe.
Similarly, we can say that the fifth and seventh harmonics are five and seven times the fundamental frequency respectively. In simple words, we can say that the third harmonics are 150 hertz if the fundamental frequency is 50 hertz ($3\times 50$ Hz). Likewise, the fifth harmonic is 250 Hz ($5\times 50$Hz) and the seventh harmonic is 350 Hz ($7\times 50$Hz).
Therefore, the nth harmonic is n times the fundamental frequency.
Note: For understanding 3rd, 5th, and 7th harmonics, it is necessary to have an idea regarding the concept of harmonics. Harmonics are the integral multiples of the fundamental frequency in terms of current or voltage. It is important to note that all harmonics are overtones, but not all overtones are harmonics. Overtone refers to every higher standing wave, whereas harmonic refers to instances in which the overtones are integer multiples of the fundamental frequency.
Complete step by step solution:
We know that the harmonics are defined as the integral multiples of the fundamental frequency, also known as the main frequency. The fundamental frequencies are multiplied by a positive integer multiple.
Now, we will understand the 3rd, 5th, and 7th harmonics. The third harmonic is now three times the fundamental frequency. It is commonly referred to as the second overtone in a sound instrument such as organ pipes that produce sound by blowing into a pipe.
Similarly, we can say that the fifth and seventh harmonics are five and seven times the fundamental frequency respectively. In simple words, we can say that the third harmonics are 150 hertz if the fundamental frequency is 50 hertz ($3\times 50$ Hz). Likewise, the fifth harmonic is 250 Hz ($5\times 50$Hz) and the seventh harmonic is 350 Hz ($7\times 50$Hz).
Therefore, the nth harmonic is n times the fundamental frequency.
Note: For understanding 3rd, 5th, and 7th harmonics, it is necessary to have an idea regarding the concept of harmonics. Harmonics are the integral multiples of the fundamental frequency in terms of current or voltage. It is important to note that all harmonics are overtones, but not all overtones are harmonics. Overtone refers to every higher standing wave, whereas harmonic refers to instances in which the overtones are integer multiples of the fundamental frequency.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

