
An ideal heat engine exhausting heat at $77{}^\circ C$ is to have a 30% efficiency. It must take heat at
A) $127{}^\circ C$
B) $227{}^\circ C$
C) $327{}^\circ C$
D) $673{}^\circ C$
Answer
232.5k+ views
Hint: Efficiency is the ratio of work done and heat taken to do that work. We have a direct equation for efficiency in terms of temperature of source and sink. Here temperature of sink and efficiency is given. We just need to substitute the values in the equation to found out the temperature of source.
Formula used:
Efficiency of heat engines,
$\eta =1-\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Where temperature used is in kelvin scale.
Complete answer:
Heat engines convert heat to mechanical energy which is used to do mechanical work. There is a heat reservoir from which heat is taken and some work is done and remaining heat is transferred to a cold reservoir. Carnot engine is an ideal heat engine. Refrigerators and heat pumps are heat engines that work in reverse order.
Efficiency of a heat engine is the ratio of work done to that of heat taken to do that work. Usually, heat engines have 30% to 50% efficiency. It is impossible for a heat engine to achieve 100% efficiency.
Given, efficiency of heat engine,
$\eta =\frac{30}{100}$
and
${{T}_{2}}=77{}^\circ C=77+273=350K$
We have to find out what is $T_1$. On substituting the values, We get,
$\frac{30}{100}=1-\frac{350}{{{T}_{1}}}$
On further solving we get temperature as ${{T}_{1}}=500K=227{}^\circ C$
Therefore, the answer is option (B)
Note: Like all other questions here, sign conversion is important and also be careful that efficiency is given in percentage. This is a direct question but still while using the temperature connecting equation for efficiency remember that the temperature of sink is always less than that of source.
Formula used:
Efficiency of heat engines,
$\eta =1-\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Where temperature used is in kelvin scale.
Complete answer:
Heat engines convert heat to mechanical energy which is used to do mechanical work. There is a heat reservoir from which heat is taken and some work is done and remaining heat is transferred to a cold reservoir. Carnot engine is an ideal heat engine. Refrigerators and heat pumps are heat engines that work in reverse order.
Efficiency of a heat engine is the ratio of work done to that of heat taken to do that work. Usually, heat engines have 30% to 50% efficiency. It is impossible for a heat engine to achieve 100% efficiency.
Given, efficiency of heat engine,
$\eta =\frac{30}{100}$
and
${{T}_{2}}=77{}^\circ C=77+273=350K$
We have to find out what is $T_1$. On substituting the values, We get,
$\frac{30}{100}=1-\frac{350}{{{T}_{1}}}$
On further solving we get temperature as ${{T}_{1}}=500K=227{}^\circ C$
Therefore, the answer is option (B)
Note: Like all other questions here, sign conversion is important and also be careful that efficiency is given in percentage. This is a direct question but still while using the temperature connecting equation for efficiency remember that the temperature of sink is always less than that of source.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

