
A train starts from rest from a station with acceleration $0.2m/{s^2}$ on a straight track and then comes to rest after attaining maximum speed on another station due to retardation $0.4m/{s^2}$ . If total time spent is half an hour, then a distance between two stations is [ Neglect the length of the train]:
A) $216Km$
B) $512Km$
C) $728Km$
D) $1296Km$
Answer
216.3k+ views
Hint:-Firstly, we will find the relation between maximum velocity achieved and time taken for attaining maximum velocity. Then we will find the relation between time taken to stop the train (making velocity $0$ ) after attaining maximum velocity and it’s final velocity which is $0$ . Then after solving equations, we will get maximum velocity. Then using laws of motions, we can find total distance by adding distances covered by train during acceleration and during retardation.
Complete Step by Step Explanation:
Let train accelerated for time ${t_1}$ and maximum velocity be ${v_1}$
Now, according to Newton’s first law of motion,
$v = u + at$
Where $v$ is final velocity,
$u$ is initial velocity,
$a$ is acceleration,
$t$ is the time to reach velocity v from u.
So, using above equation, we get,
${v_1} = 0 + 0.2{t_1}$ (since, initial velocity of train is zero and acceleration is $0.2m/{s^2}$ )
On solving we get,
${t_1} = \dfrac{{{v_1}}}{{0.2}}$ -----(1)
Now, let velocity becomes zero from ${v_1}$ in time ${t_2}$ due to retardation of $0.4m/{s^2}.$
So, according to Newton’s first law of motion, we get,
$0 = {v_1} + ( - 0.4){t_2}$
On solving we get,
${t_2} = \dfrac{{{v_1}}}{{0.4}}$ -----(2)
Adding equation one and two, we get,
${t_1} + {t_2} = \dfrac{{{v_1}}}{{0.2}} + \dfrac{{{v_1}}}{{0.4}}$
Now, total time is given to us as half hour which is $30 \times 60 = 1800$ seconds, so we get,
$1800 = \dfrac{{{v_1}}}{{0.2}} + \dfrac{{{v_1}}}{{0.4}}$
Solving this we get,
$1800 = 7.5{v_1}$
So we get maximum velocity as,
${v_1} = 240m{s^{ - 1}}$
Now, according to Newton’s third law of motion,
${v^2} - {u^2} = 2as$
Where $v$ is final velocity,
$u$ is initial velocity,
$a$ is acceleration and
$s$ is distance covered.
So, let the distance covered during acceleration be $s_1$
So using Newton’s third law of motion,
${v_1}^2 - {0^2} = 2 \times 0.2 \times s_1$
Putting all values, we get,
${240^2} = 2 \times 0.2 \times s_1$
So, $s_1 = \dfrac{{{{240}^2}}}{{0.4}}$
So, let the distance covered during retardation be $s_2$
So using Newton’s third law of motion,
${0^2} - {v_1}^2 = 2 \times \left( { - 0.4} \right) \times s_2$
Putting all values, we get,
${240^2} = 2 \times 0.4 \times s_2$
So, $s_2 = \dfrac{{{{240}^2}}}{{0.8}}$
Total distance covered by train is $s_1 + s_2 = \dfrac{{{{240}^2}}}{{0.4}} + \dfrac{{{{240}^2}}}{{0.8}}$
On solving we get,
$s_1 + s_2 = {240^2}\left[ {\dfrac{1}{{0.4}} + \dfrac{1}{{0.8}}} \right]$
On simplifying, we get,
\[s_1 + s_2 = {240^2} \times \dfrac{3}{{0.8}}\] metres,
On further solving we get,
$s_1 + s_2 = 216000$ metres
This is equivalent to $s_1 + s_2 = 216Km.$
So the correct answer is option (A).
Note:When the acceleration becomes negative (retardation), the train will still move in forward direction. Only velocity decreases during retardation, and distance will only decrease when velocity becomes negative. Hence, the train will also move forward during retardation and finally the velocity becomes zero and it doesn’t move anymore.
Complete Step by Step Explanation:
Let train accelerated for time ${t_1}$ and maximum velocity be ${v_1}$
Now, according to Newton’s first law of motion,
$v = u + at$
Where $v$ is final velocity,
$u$ is initial velocity,
$a$ is acceleration,
$t$ is the time to reach velocity v from u.
So, using above equation, we get,
${v_1} = 0 + 0.2{t_1}$ (since, initial velocity of train is zero and acceleration is $0.2m/{s^2}$ )
On solving we get,
${t_1} = \dfrac{{{v_1}}}{{0.2}}$ -----(1)
Now, let velocity becomes zero from ${v_1}$ in time ${t_2}$ due to retardation of $0.4m/{s^2}.$
So, according to Newton’s first law of motion, we get,
$0 = {v_1} + ( - 0.4){t_2}$
On solving we get,
${t_2} = \dfrac{{{v_1}}}{{0.4}}$ -----(2)
Adding equation one and two, we get,
${t_1} + {t_2} = \dfrac{{{v_1}}}{{0.2}} + \dfrac{{{v_1}}}{{0.4}}$
Now, total time is given to us as half hour which is $30 \times 60 = 1800$ seconds, so we get,
$1800 = \dfrac{{{v_1}}}{{0.2}} + \dfrac{{{v_1}}}{{0.4}}$
Solving this we get,
$1800 = 7.5{v_1}$
So we get maximum velocity as,
${v_1} = 240m{s^{ - 1}}$
Now, according to Newton’s third law of motion,
${v^2} - {u^2} = 2as$
Where $v$ is final velocity,
$u$ is initial velocity,
$a$ is acceleration and
$s$ is distance covered.
So, let the distance covered during acceleration be $s_1$
So using Newton’s third law of motion,
${v_1}^2 - {0^2} = 2 \times 0.2 \times s_1$
Putting all values, we get,
${240^2} = 2 \times 0.2 \times s_1$
So, $s_1 = \dfrac{{{{240}^2}}}{{0.4}}$
So, let the distance covered during retardation be $s_2$
So using Newton’s third law of motion,
${0^2} - {v_1}^2 = 2 \times \left( { - 0.4} \right) \times s_2$
Putting all values, we get,
${240^2} = 2 \times 0.4 \times s_2$
So, $s_2 = \dfrac{{{{240}^2}}}{{0.8}}$
Total distance covered by train is $s_1 + s_2 = \dfrac{{{{240}^2}}}{{0.4}} + \dfrac{{{{240}^2}}}{{0.8}}$
On solving we get,
$s_1 + s_2 = {240^2}\left[ {\dfrac{1}{{0.4}} + \dfrac{1}{{0.8}}} \right]$
On simplifying, we get,
\[s_1 + s_2 = {240^2} \times \dfrac{3}{{0.8}}\] metres,
On further solving we get,
$s_1 + s_2 = 216000$ metres
This is equivalent to $s_1 + s_2 = 216Km.$
So the correct answer is option (A).
Note:When the acceleration becomes negative (retardation), the train will still move in forward direction. Only velocity decreases during retardation, and distance will only decrease when velocity becomes negative. Hence, the train will also move forward during retardation and finally the velocity becomes zero and it doesn’t move anymore.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

