
A train starts from rest from a station with acceleration $0.2m/{s^2}$ on a straight track and then comes to rest after attaining maximum speed on another station due to retardation $0.4m/{s^2}$ . If total time spent is half an hour, then a distance between two stations is [ Neglect the length of the train]:
A) $216Km$
B) $512Km$
C) $728Km$
D) $1296Km$
Answer
146.1k+ views
Hint:-Firstly, we will find the relation between maximum velocity achieved and time taken for attaining maximum velocity. Then we will find the relation between time taken to stop the train (making velocity $0$ ) after attaining maximum velocity and it’s final velocity which is $0$ . Then after solving equations, we will get maximum velocity. Then using laws of motions, we can find total distance by adding distances covered by train during acceleration and during retardation.
Complete Step by Step Explanation:
Let train accelerated for time ${t_1}$ and maximum velocity be ${v_1}$
Now, according to Newton’s first law of motion,
$v = u + at$
Where $v$ is final velocity,
$u$ is initial velocity,
$a$ is acceleration,
$t$ is the time to reach velocity v from u.
So, using above equation, we get,
${v_1} = 0 + 0.2{t_1}$ (since, initial velocity of train is zero and acceleration is $0.2m/{s^2}$ )
On solving we get,
${t_1} = \dfrac{{{v_1}}}{{0.2}}$ -----(1)
Now, let velocity becomes zero from ${v_1}$ in time ${t_2}$ due to retardation of $0.4m/{s^2}.$
So, according to Newton’s first law of motion, we get,
$0 = {v_1} + ( - 0.4){t_2}$
On solving we get,
${t_2} = \dfrac{{{v_1}}}{{0.4}}$ -----(2)
Adding equation one and two, we get,
${t_1} + {t_2} = \dfrac{{{v_1}}}{{0.2}} + \dfrac{{{v_1}}}{{0.4}}$
Now, total time is given to us as half hour which is $30 \times 60 = 1800$ seconds, so we get,
$1800 = \dfrac{{{v_1}}}{{0.2}} + \dfrac{{{v_1}}}{{0.4}}$
Solving this we get,
$1800 = 7.5{v_1}$
So we get maximum velocity as,
${v_1} = 240m{s^{ - 1}}$
Now, according to Newton’s third law of motion,
${v^2} - {u^2} = 2as$
Where $v$ is final velocity,
$u$ is initial velocity,
$a$ is acceleration and
$s$ is distance covered.
So, let the distance covered during acceleration be $s_1$
So using Newton’s third law of motion,
${v_1}^2 - {0^2} = 2 \times 0.2 \times s_1$
Putting all values, we get,
${240^2} = 2 \times 0.2 \times s_1$
So, $s_1 = \dfrac{{{{240}^2}}}{{0.4}}$
So, let the distance covered during retardation be $s_2$
So using Newton’s third law of motion,
${0^2} - {v_1}^2 = 2 \times \left( { - 0.4} \right) \times s_2$
Putting all values, we get,
${240^2} = 2 \times 0.4 \times s_2$
So, $s_2 = \dfrac{{{{240}^2}}}{{0.8}}$
Total distance covered by train is $s_1 + s_2 = \dfrac{{{{240}^2}}}{{0.4}} + \dfrac{{{{240}^2}}}{{0.8}}$
On solving we get,
$s_1 + s_2 = {240^2}\left[ {\dfrac{1}{{0.4}} + \dfrac{1}{{0.8}}} \right]$
On simplifying, we get,
\[s_1 + s_2 = {240^2} \times \dfrac{3}{{0.8}}\] metres,
On further solving we get,
$s_1 + s_2 = 216000$ metres
This is equivalent to $s_1 + s_2 = 216Km.$
So the correct answer is option (A).
Note:When the acceleration becomes negative (retardation), the train will still move in forward direction. Only velocity decreases during retardation, and distance will only decrease when velocity becomes negative. Hence, the train will also move forward during retardation and finally the velocity becomes zero and it doesn’t move anymore.
Complete Step by Step Explanation:
Let train accelerated for time ${t_1}$ and maximum velocity be ${v_1}$
Now, according to Newton’s first law of motion,
$v = u + at$
Where $v$ is final velocity,
$u$ is initial velocity,
$a$ is acceleration,
$t$ is the time to reach velocity v from u.
So, using above equation, we get,
${v_1} = 0 + 0.2{t_1}$ (since, initial velocity of train is zero and acceleration is $0.2m/{s^2}$ )
On solving we get,
${t_1} = \dfrac{{{v_1}}}{{0.2}}$ -----(1)
Now, let velocity becomes zero from ${v_1}$ in time ${t_2}$ due to retardation of $0.4m/{s^2}.$
So, according to Newton’s first law of motion, we get,
$0 = {v_1} + ( - 0.4){t_2}$
On solving we get,
${t_2} = \dfrac{{{v_1}}}{{0.4}}$ -----(2)
Adding equation one and two, we get,
${t_1} + {t_2} = \dfrac{{{v_1}}}{{0.2}} + \dfrac{{{v_1}}}{{0.4}}$
Now, total time is given to us as half hour which is $30 \times 60 = 1800$ seconds, so we get,
$1800 = \dfrac{{{v_1}}}{{0.2}} + \dfrac{{{v_1}}}{{0.4}}$
Solving this we get,
$1800 = 7.5{v_1}$
So we get maximum velocity as,
${v_1} = 240m{s^{ - 1}}$
Now, according to Newton’s third law of motion,
${v^2} - {u^2} = 2as$
Where $v$ is final velocity,
$u$ is initial velocity,
$a$ is acceleration and
$s$ is distance covered.
So, let the distance covered during acceleration be $s_1$
So using Newton’s third law of motion,
${v_1}^2 - {0^2} = 2 \times 0.2 \times s_1$
Putting all values, we get,
${240^2} = 2 \times 0.2 \times s_1$
So, $s_1 = \dfrac{{{{240}^2}}}{{0.4}}$
So, let the distance covered during retardation be $s_2$
So using Newton’s third law of motion,
${0^2} - {v_1}^2 = 2 \times \left( { - 0.4} \right) \times s_2$
Putting all values, we get,
${240^2} = 2 \times 0.4 \times s_2$
So, $s_2 = \dfrac{{{{240}^2}}}{{0.8}}$
Total distance covered by train is $s_1 + s_2 = \dfrac{{{{240}^2}}}{{0.4}} + \dfrac{{{{240}^2}}}{{0.8}}$
On solving we get,
$s_1 + s_2 = {240^2}\left[ {\dfrac{1}{{0.4}} + \dfrac{1}{{0.8}}} \right]$
On simplifying, we get,
\[s_1 + s_2 = {240^2} \times \dfrac{3}{{0.8}}\] metres,
On further solving we get,
$s_1 + s_2 = 216000$ metres
This is equivalent to $s_1 + s_2 = 216Km.$
So the correct answer is option (A).
Note:When the acceleration becomes negative (retardation), the train will still move in forward direction. Only velocity decreases during retardation, and distance will only decrease when velocity becomes negative. Hence, the train will also move forward during retardation and finally the velocity becomes zero and it doesn’t move anymore.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
