
A steel wire of diameter 2mm has a breaking strength of $4\times {{10}^{5}}N$. What is the breaking force of a similar steel wire of diameter 1.5mm?
A) $2.3\times {{10}^{5}}N$
B) $2.6\times {{10}^{5}}N$
C) $3\times {{10}^{5}}N$
D) $1.5\times {{10}^{5}}N$
Answer
221.7k+ views
Hint: This question can be solved by using the concept that the breaking stress of a material is the ratio of the breaking force to the cross-sectional area. Thus, for the same material (same breaking stress), breaking force will be directly proportional to the cross-sectional area.
Formula used:
$\text{Breaking stress = }\dfrac{\text{Breaking force}}{\text{Cross-sectional area}}$
$\text{Breaking force }\propto \text{ Cross-sectional area }\left( \text{for same material} \right)$
$\text{Cross-sectional area of wire (cylindrical) = }\dfrac{\pi {{d}^{2}}}{4}$
where d is the diameter of the wire.
Complete step by step answer:
The breaking stress of a material is the ratio of the breaking force to the cross-sectional area. Thus, for the same material (same breaking stress), breaking force will be directly proportional to the cross-sectional area. --(1)
Now, let us analyze the given information. Let the wire with diameter 2mm be wire 1 and the other one be wire 2.
Breaking force of wire 1 (F1) = $4\times {{10}^{5}}N$
Diameter of wire 1 (d1) = 2 mm
Breaking force of wire 2 (F2) =?
Diameter of wire 2 (d2) = 1.5 mm.
Now, using (1),
$\text{Breaking stress = }\dfrac{\text{Breaking force}}{\text{Cross-sectional area}}$
$\text{Breaking force }\propto \text{ Cross-sectional area }\left( \text{for same material} \right)$ ---(2)
$\text{Cross-sectional area of wire (cylindrical) = }\dfrac{\pi {{d}^{2}}}{4}$ --(3)
where d is the diameter of the wire.
Using, (2) and (3)
$\dfrac{\text{Breaking force of wire 1}}{\text{Breaking force of wire 2}}=\dfrac{\text{Cross-sectional area of wire 1}}{\text{Cross-sectional area of wire 2}}$
\[\therefore \dfrac{{{F}_{1}}}{{{F}_{2}}}=\dfrac{\dfrac{\pi {{d}_{1}}^{2}}{4}}{\dfrac{\pi {{d}_{2}}^{2}}{4}}\]
$\therefore {{F}_{2}}={{F}_{1}}\times \dfrac{{{d}_{2}}^{2}}{{{d}_{1}}^{2}}$
$=4\times {{10}^{5}}\times \dfrac{{{1.5}^{2}}}{{{2}^{2}}}=2.25\times {{10}^{5}}N$
Hence, the breaking force of wire 2 is $2.25\times {{10}^{5}}N$.
The option closest to this is the correct answer A) $2.3\times {{10}^{5}}N$.
Note: For wires of the same material such problems can be solved using the concept of proportionality since the breaking stress is the same for a material. However, if the materials of the wire were different, we would have to proceed by first calculating the breaking stress of the wires by use of the information in the question (or if the value is given) and then proceed to individually, find out the breaking force by using the respective formula.
Thus, it is evident that a wire with a larger diameter (and hence larger cross-sectional area) has larger breaking strength and can withstand larger loads. Thus, for high load requirements such as the cables of pulleys in elevators, the cables are made of thick iron or steel cables.
Formula used:
$\text{Breaking stress = }\dfrac{\text{Breaking force}}{\text{Cross-sectional area}}$
$\text{Breaking force }\propto \text{ Cross-sectional area }\left( \text{for same material} \right)$
$\text{Cross-sectional area of wire (cylindrical) = }\dfrac{\pi {{d}^{2}}}{4}$
where d is the diameter of the wire.
Complete step by step answer:
The breaking stress of a material is the ratio of the breaking force to the cross-sectional area. Thus, for the same material (same breaking stress), breaking force will be directly proportional to the cross-sectional area. --(1)
Now, let us analyze the given information. Let the wire with diameter 2mm be wire 1 and the other one be wire 2.
Breaking force of wire 1 (F1) = $4\times {{10}^{5}}N$
Diameter of wire 1 (d1) = 2 mm
Breaking force of wire 2 (F2) =?
Diameter of wire 2 (d2) = 1.5 mm.
Now, using (1),
$\text{Breaking stress = }\dfrac{\text{Breaking force}}{\text{Cross-sectional area}}$
$\text{Breaking force }\propto \text{ Cross-sectional area }\left( \text{for same material} \right)$ ---(2)
$\text{Cross-sectional area of wire (cylindrical) = }\dfrac{\pi {{d}^{2}}}{4}$ --(3)
where d is the diameter of the wire.
Using, (2) and (3)
$\dfrac{\text{Breaking force of wire 1}}{\text{Breaking force of wire 2}}=\dfrac{\text{Cross-sectional area of wire 1}}{\text{Cross-sectional area of wire 2}}$
\[\therefore \dfrac{{{F}_{1}}}{{{F}_{2}}}=\dfrac{\dfrac{\pi {{d}_{1}}^{2}}{4}}{\dfrac{\pi {{d}_{2}}^{2}}{4}}\]
$\therefore {{F}_{2}}={{F}_{1}}\times \dfrac{{{d}_{2}}^{2}}{{{d}_{1}}^{2}}$
$=4\times {{10}^{5}}\times \dfrac{{{1.5}^{2}}}{{{2}^{2}}}=2.25\times {{10}^{5}}N$
Hence, the breaking force of wire 2 is $2.25\times {{10}^{5}}N$.
The option closest to this is the correct answer A) $2.3\times {{10}^{5}}N$.
Note: For wires of the same material such problems can be solved using the concept of proportionality since the breaking stress is the same for a material. However, if the materials of the wire were different, we would have to proceed by first calculating the breaking stress of the wires by use of the information in the question (or if the value is given) and then proceed to individually, find out the breaking force by using the respective formula.
Thus, it is evident that a wire with a larger diameter (and hence larger cross-sectional area) has larger breaking strength and can withstand larger loads. Thus, for high load requirements such as the cables of pulleys in elevators, the cables are made of thick iron or steel cables.
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Classification of Solids: Types & Properties Explained

Amorphous and Crystalline Solids for JEE Main and Advanced

JEE Main 2017 (Set - Y) Question Paper with Answer Key

General Characteristics of Solid State: Key Points for Students

Dimensional Formulae and Dimensional Equations Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Marks vs Percentile vs Rank 2026: Calculate Percentile and Rank Using Marks

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

Other Pages
Essential Physics Formulas for Class 9: Complete Chapterwise List

Class 11 Physics MCQs: Chapterwise Practice with Answers

Understanding Uniform Acceleration in Physics

Devuthani Ekadashi 2025: Know the Correct Date, Shubh Muhurat, and Parana Time

Difference Between Exothermic and Endothermic Reactions Explained

Quadratic Equation Questions: Practice Problems, Answers & Exam Tricks

