
A sphere of radius ‘a’ and mass ‘m’ rolls along a horizontal plane with constant speed\[{v_0}\]. It encounters an inclined plane at angle \[\theta \] and climbs upward. Assuming that it rolls without slipping how far up the sphere will travel (along the incline)?

A. \[\dfrac{{\left( {\dfrac{2}{5}} \right){v_0}^2}}{{g\sin \theta }}\]
B. \[\dfrac{{10{v_0}^2}}{{7g\sin \theta }}\]
C. \[\dfrac{{{v_0}^2}}{{5g\sin \theta }}\]
D. \[\dfrac{{7{v_0}^2}}{{10g\sin \theta }}\]
Answer
219.6k+ views
Hint: Before we start addressing the question, we need to know about the inclined plane. It is a simple machine that consists of a sloping surface that is used for raising heavy bodies. If the incline plane’s angle keeps getting steeper, the force required also increases till it becomes equal to the weight of the object.
Formula Used:
From the conservation of energy, the formula is given by,
\[T{E_i} = T{E_f}\]
Where, \[T{E_i}\] is initial total energy and \[T{E_f}\] is final total energy.
Complete step by step solution:

Consider a sphere of radius ‘a’ and mass ‘m’ rolls along the horizontal plane with constant speed (linear velocity)\[{v_0}\]. If the sphere is rolling without slipping then its angular velocity will be \[\omega \]and it reaches the inclined plane and starts climbing. We need to find how far the sphere will travel on an inclined plane.
In order to find that, we have
Initial total energy =final total energy
\[T{E_i} = T{E_f}\]
\[\Rightarrow K{E_{\left( {trans} \right)i}} + K{E_{\left( {rot} \right)i}} + P{E_i} = K{E_{\left( {trans} \right)f}} + K{E_{\left( {rot} \right)f}} + P{E_f}\]
We know that the total energy is equal to the sum of kinetic energy and potential energy.
\[\dfrac{1}{2}m{v_0}^2 + \dfrac{1}{2}I{\omega _0}^2 + 0 = 0 + 0 + mgh\]
\[\Rightarrow \dfrac{1}{2}m{v_0}^2 + \dfrac{1}{2}I{\omega _0}^2 = mgh\]
Since we know that, the moment of inertia is \[\dfrac{2}{5}m{a^2}\](radius \[r = a\]here) and by using the relation between linear and angular velocity,
\[\omega = \dfrac{v}{r}\]
\[ \Rightarrow \omega = \dfrac{v}{a}\].
Then the above equation will become,
\[\dfrac{1}{2}m{v_0}^2 + \dfrac{1}{2} \times \dfrac{2}{5}m{a^2}\dfrac{{{v_0}^2}}{{{a^2}}} = mgh\]
\[\Rightarrow \dfrac{1}{2}m{v_0}^2 + \dfrac{2}{{10}}m{v_0}^2 = mgh\]
\[\Rightarrow m\left( {\dfrac{1}{2}{v_0}^2 + \dfrac{1}{5}{v_0}^2} \right) = mgh\]
\[\Rightarrow gh = \dfrac{7}{{10}}{v_0}^2\]
\[\Rightarrow h = \dfrac{7}{{10g}}{v_0}^2\]
From the triangle,
\[\sin \theta = \dfrac{h}{l}\]
\[ \Rightarrow h = l\sin \theta \]
So, substitute the value in above equation we get,
\[l\sin \theta = \dfrac{7}{{10g}}{v_0}^2\]
\[ \therefore l = \dfrac{{7{v_0}^2}}{{10g\sin \theta }}\]
Therefore, the sphere will travel on an inclined plane at \[\dfrac{{7{v_0}^2}}{{10g\sin \theta }}\]
Hence, Option D is the correct answer.
Note:Remember that, if a sphere of some radius r is rolling with some speed v, then it has both translational and rotational motion. So, if we want to find the total energy then, it includes translational, rotational and also its potential energy.
Formula Used:
From the conservation of energy, the formula is given by,
\[T{E_i} = T{E_f}\]
Where, \[T{E_i}\] is initial total energy and \[T{E_f}\] is final total energy.
Complete step by step solution:

Consider a sphere of radius ‘a’ and mass ‘m’ rolls along the horizontal plane with constant speed (linear velocity)\[{v_0}\]. If the sphere is rolling without slipping then its angular velocity will be \[\omega \]and it reaches the inclined plane and starts climbing. We need to find how far the sphere will travel on an inclined plane.
In order to find that, we have
Initial total energy =final total energy
\[T{E_i} = T{E_f}\]
\[\Rightarrow K{E_{\left( {trans} \right)i}} + K{E_{\left( {rot} \right)i}} + P{E_i} = K{E_{\left( {trans} \right)f}} + K{E_{\left( {rot} \right)f}} + P{E_f}\]
We know that the total energy is equal to the sum of kinetic energy and potential energy.
\[\dfrac{1}{2}m{v_0}^2 + \dfrac{1}{2}I{\omega _0}^2 + 0 = 0 + 0 + mgh\]
\[\Rightarrow \dfrac{1}{2}m{v_0}^2 + \dfrac{1}{2}I{\omega _0}^2 = mgh\]
Since we know that, the moment of inertia is \[\dfrac{2}{5}m{a^2}\](radius \[r = a\]here) and by using the relation between linear and angular velocity,
\[\omega = \dfrac{v}{r}\]
\[ \Rightarrow \omega = \dfrac{v}{a}\].
Then the above equation will become,
\[\dfrac{1}{2}m{v_0}^2 + \dfrac{1}{2} \times \dfrac{2}{5}m{a^2}\dfrac{{{v_0}^2}}{{{a^2}}} = mgh\]
\[\Rightarrow \dfrac{1}{2}m{v_0}^2 + \dfrac{2}{{10}}m{v_0}^2 = mgh\]
\[\Rightarrow m\left( {\dfrac{1}{2}{v_0}^2 + \dfrac{1}{5}{v_0}^2} \right) = mgh\]
\[\Rightarrow gh = \dfrac{7}{{10}}{v_0}^2\]
\[\Rightarrow h = \dfrac{7}{{10g}}{v_0}^2\]
From the triangle,
\[\sin \theta = \dfrac{h}{l}\]
\[ \Rightarrow h = l\sin \theta \]
So, substitute the value in above equation we get,
\[l\sin \theta = \dfrac{7}{{10g}}{v_0}^2\]
\[ \therefore l = \dfrac{{7{v_0}^2}}{{10g\sin \theta }}\]
Therefore, the sphere will travel on an inclined plane at \[\dfrac{{7{v_0}^2}}{{10g\sin \theta }}\]
Hence, Option D is the correct answer.
Note:Remember that, if a sphere of some radius r is rolling with some speed v, then it has both translational and rotational motion. So, if we want to find the total energy then, it includes translational, rotational and also its potential energy.
Recently Updated Pages
JEE Main 2022 (July 25th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

Cyclotron: Principles, Working & Uses Explained

JEE Main 2022 (July 27th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

Compressibility Factor Explained: Definition, Formula & Uses

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

