
A sonometer wire has a length of 114 cm between the two fixed ends; where should two bridges be placed so as to divide the wire into three segments whose fundamental frequencies are in the ratio $1:3:4$ ?
Answer
219k+ views
Hint: A sonometer is a device which is used to determine the relationship between the frequency of the sound and the tension in the string when a string is plucked. The frequency in the string is inversely proportional to the length of the string.
Formula used:
The formula for the frequency in the string is given by,
$f = \dfrac{1}{{2l}}\sqrt {\dfrac{T}{m}} $
Where f is the fundamental frequency, l is the length of the string, T is the tension in the string and m is the mass per unit length.
Complete step by step solution:
It is given in the problem that the sonometer wire has a length of 114 cm between two fixed ends and we need to find where the two bridges should be placed so that the wire is divided into three segments having fundamental frequencies in the ratio $1:3:4$.
As the relationship between the frequency and the length is equal to,
$ \Rightarrow f\alpha \dfrac{1}{l}$
Where f is the frequency and l is the length.
The ratio of the frequency given as,
$ \Rightarrow {f_1}:{f_2}:{f_3} = 1:2:3$
Since $f\alpha \dfrac{1}{l}$ we get,
$ \Rightarrow {f_1}:{f_2}:{f_3} = 1:2:3$
$ \Rightarrow {l_1}:{l_2}:{l_3} = \dfrac{1}{1}:\dfrac{1}{2}:\dfrac{1}{3}$
$ \Rightarrow {l_1}:{l_2}:{l_3} = 6:3:2$
The length of the three segments is equal to,
For length of first segment,
$ \Rightarrow {l_1} = \dfrac{6}{{11}} \times 110$
$ \Rightarrow {l_1} = 60cm$
For length of second segment
$ \Rightarrow {l_2} = \dfrac{3}{{11}} \times 110$
$ \Rightarrow {l_2} = 30cm$
For length of third segment
$ \Rightarrow {l_3} = \dfrac{2}{{11}} \times 110$
$ \Rightarrow {l_3} = 20cm$.
The length of segments is given by${l_1} = 60cm$,${l_2} = 30cm$ and ${l_3} = 20cm$.
Note: The sonometer works on the principle of resonance. The sonometer can also verify the laws of vibration on stretched strings and help in finding the frequency of the turning fork. If the frequency of the applied force becomes equal to the natural frequency then the resultant frequency is of very high amplitude.
Formula used:
The formula for the frequency in the string is given by,
$f = \dfrac{1}{{2l}}\sqrt {\dfrac{T}{m}} $
Where f is the fundamental frequency, l is the length of the string, T is the tension in the string and m is the mass per unit length.
Complete step by step solution:
It is given in the problem that the sonometer wire has a length of 114 cm between two fixed ends and we need to find where the two bridges should be placed so that the wire is divided into three segments having fundamental frequencies in the ratio $1:3:4$.
As the relationship between the frequency and the length is equal to,
$ \Rightarrow f\alpha \dfrac{1}{l}$
Where f is the frequency and l is the length.
The ratio of the frequency given as,
$ \Rightarrow {f_1}:{f_2}:{f_3} = 1:2:3$
Since $f\alpha \dfrac{1}{l}$ we get,
$ \Rightarrow {f_1}:{f_2}:{f_3} = 1:2:3$
$ \Rightarrow {l_1}:{l_2}:{l_3} = \dfrac{1}{1}:\dfrac{1}{2}:\dfrac{1}{3}$
$ \Rightarrow {l_1}:{l_2}:{l_3} = 6:3:2$
The length of the three segments is equal to,
For length of first segment,
$ \Rightarrow {l_1} = \dfrac{6}{{11}} \times 110$
$ \Rightarrow {l_1} = 60cm$
For length of second segment
$ \Rightarrow {l_2} = \dfrac{3}{{11}} \times 110$
$ \Rightarrow {l_2} = 30cm$
For length of third segment
$ \Rightarrow {l_3} = \dfrac{2}{{11}} \times 110$
$ \Rightarrow {l_3} = 20cm$.
The length of segments is given by${l_1} = 60cm$,${l_2} = 30cm$ and ${l_3} = 20cm$.
Note: The sonometer works on the principle of resonance. The sonometer can also verify the laws of vibration on stretched strings and help in finding the frequency of the turning fork. If the frequency of the applied force becomes equal to the natural frequency then the resultant frequency is of very high amplitude.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

