
A rigid body can be hinged about any point on the x-axis. When it is hinged such that the hinge is at a distance x the moment of inertia is given by $I = 2{x^2} - 12x + 27$. Then the x-coordinate of centre of mass is:
A. $x = 2$
B. $x = 0$
C. $x = 1$
D. $x = 3$
Answer
164.1k+ views
Hint: Here in this question, we have to find the coordinates of the centre of mass. When attempting to determine the centre of mass between two masses, multiplying the masses by their positions will yield the centre of mass. Following that, add these together and divide the total by the total of the individual masses. In this problem, we will differentiate the given expression of moment inertia with respect to $x$ and then put it equal to zero to find the x-coordinate of centre of mass.
Complete step by step solution:
As given in the question that a rigid body may be pivoted about any x-axis point. The moment of inertia is given by when it is hinged with the hinge at a distance of x,
$I = 2{x^2} - 12x + 27 \\ $
To find the x-coordinate of the centre of mass we know that, At the body's centre of mass, the moment of inertia is at its lowest level. By which we can say that,
$\dfrac{{dI}}{{dx}} = 0 \\ $
As by putting the value of moment of inertia in the above equation, we get the resultant as
$\dfrac{{d(2{x^2} - 12x + 27)}}{{dx}} = 0 \\ $
By doing differentiation with respect to x we get,
$4x - 12 = 0$
For the value of x, taking x at one side and others at the another we get the value of x as,
$x = 3$
Therefore, the correct answer for the coordinate of the centre of mass is $x = 3$.
Hence, the correct option is D.
Note: We must know that, A mass moving in translation has the same physical significance as the moment of inertia. When calculating inertia in translational motion, a body's mass is used. With an increase in mass, inertia rises. Additionally, a greater force will be needed to provide linear acceleration.
Complete step by step solution:
As given in the question that a rigid body may be pivoted about any x-axis point. The moment of inertia is given by when it is hinged with the hinge at a distance of x,
$I = 2{x^2} - 12x + 27 \\ $
To find the x-coordinate of the centre of mass we know that, At the body's centre of mass, the moment of inertia is at its lowest level. By which we can say that,
$\dfrac{{dI}}{{dx}} = 0 \\ $
As by putting the value of moment of inertia in the above equation, we get the resultant as
$\dfrac{{d(2{x^2} - 12x + 27)}}{{dx}} = 0 \\ $
By doing differentiation with respect to x we get,
$4x - 12 = 0$
For the value of x, taking x at one side and others at the another we get the value of x as,
$x = 3$
Therefore, the correct answer for the coordinate of the centre of mass is $x = 3$.
Hence, the correct option is D.
Note: We must know that, A mass moving in translation has the same physical significance as the moment of inertia. When calculating inertia in translational motion, a body's mass is used. With an increase in mass, inertia rises. Additionally, a greater force will be needed to provide linear acceleration.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
