Answer

Verified

70.5k+ views

Hint: As the reflected ray passes through the focus and we know the coordinates of the focus. So first we will find the intersection of a ray of light and a concave mirror and then use the equation of line formula to find the required equation.

Complete step-by-step answer:

In a concave mirror if the ray of light is parallel to the axis of the mirror, then the reflected ray will pass through the focus of the concave mirror.

As per the information given, we can draw the diagram as follows.

Let the ray of light meet the concave mirror at point P. Then Pf is the reflected ray where f is the focus of the concave mirror.

The equation of parabola or the equation of the concave mirror is,

${{y}^{2}}=4ax$

So, the coordinate of the point f will be $\left( a,0 \right)$.

As it is given that ray of light with equation $y=b$ strikes the concave mirror, so substituting the value of ‘y’ we get,

${{b}^{2}}=4ax$

$x=\dfrac{{{b}^{2}}}{4a}$

So, the coordinates of the point P is $\left( \dfrac{{{b}^{2}}}{4a},b \right)$ .

Now the slope of the line passing through two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$is given by,

$m=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$

So, the slope of the line passing through point \[f\left( a,0 \right)\] and \[P\left( \dfrac{{{b}^{2}}}{4a},b \right)\] is,

$m=\dfrac{b-0}{\dfrac{{{b}^{2}}}{4a}-a}$

$\Rightarrow m=\dfrac{b}{\dfrac{{{b}^{2}}-4{{a}^{2}}}{4a}}$

$\Rightarrow m=\dfrac{4ab}{{{b}^{2}}-4{{a}^{2}}}$

Now we know the line of equation passing through the point $\left( {{x}_{1}},{{y}_{1}} \right)$is,

$y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$

where ‘m’ is the slope of the line.

So, the equation of line passing through the point \[f\left( a,0 \right)\]with slope, $m=\dfrac{4ab}{{{b}^{2}}-4{{a}^{2}}}$, is,

$y-0=\left( \dfrac{4ab}{{{b}^{2}}-4{{a}^{2}}} \right)\left( x-a \right)$

$\Rightarrow \left( {{b}^{2}}-4{{a}^{2}} \right)y=4ab\left( x-a \right)$

$\Rightarrow 4abx-4{{a}^{2}}b-\left( {{b}^{2}}-4{{a}^{2}} \right)y=0$

$\Rightarrow 4abx-\left( {{b}^{2}}-4{{a}^{2}} \right)y-4{{a}^{2}}b=0$

Now as the reflected ray is passing through the focus, i.e., f, so the equation of reflected ray is,

$4abx-\left( {{b}^{2}}-4{{a}^{2}} \right)y-4{{a}^{2}}b=0$

Note: In this instead using the slope form of the equation of line we can use the point form of equation of line formula as well. In both cases you will get the same answer.

Complete step-by-step answer:

In a concave mirror if the ray of light is parallel to the axis of the mirror, then the reflected ray will pass through the focus of the concave mirror.

As per the information given, we can draw the diagram as follows.

Let the ray of light meet the concave mirror at point P. Then Pf is the reflected ray where f is the focus of the concave mirror.

The equation of parabola or the equation of the concave mirror is,

${{y}^{2}}=4ax$

So, the coordinate of the point f will be $\left( a,0 \right)$.

As it is given that ray of light with equation $y=b$ strikes the concave mirror, so substituting the value of ‘y’ we get,

${{b}^{2}}=4ax$

$x=\dfrac{{{b}^{2}}}{4a}$

So, the coordinates of the point P is $\left( \dfrac{{{b}^{2}}}{4a},b \right)$ .

Now the slope of the line passing through two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$is given by,

$m=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$

So, the slope of the line passing through point \[f\left( a,0 \right)\] and \[P\left( \dfrac{{{b}^{2}}}{4a},b \right)\] is,

$m=\dfrac{b-0}{\dfrac{{{b}^{2}}}{4a}-a}$

$\Rightarrow m=\dfrac{b}{\dfrac{{{b}^{2}}-4{{a}^{2}}}{4a}}$

$\Rightarrow m=\dfrac{4ab}{{{b}^{2}}-4{{a}^{2}}}$

Now we know the line of equation passing through the point $\left( {{x}_{1}},{{y}_{1}} \right)$is,

$y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$

where ‘m’ is the slope of the line.

So, the equation of line passing through the point \[f\left( a,0 \right)\]with slope, $m=\dfrac{4ab}{{{b}^{2}}-4{{a}^{2}}}$, is,

$y-0=\left( \dfrac{4ab}{{{b}^{2}}-4{{a}^{2}}} \right)\left( x-a \right)$

$\Rightarrow \left( {{b}^{2}}-4{{a}^{2}} \right)y=4ab\left( x-a \right)$

$\Rightarrow 4abx-4{{a}^{2}}b-\left( {{b}^{2}}-4{{a}^{2}} \right)y=0$

$\Rightarrow 4abx-\left( {{b}^{2}}-4{{a}^{2}} \right)y-4{{a}^{2}}b=0$

Now as the reflected ray is passing through the focus, i.e., f, so the equation of reflected ray is,

$4abx-\left( {{b}^{2}}-4{{a}^{2}} \right)y-4{{a}^{2}}b=0$

Note: In this instead using the slope form of the equation of line we can use the point form of equation of line formula as well. In both cases you will get the same answer.

Recently Updated Pages

Write an article on the need and importance of sports class 10 english JEE_Main

Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main

Choose the one which best expresses the meaning of class 9 english JEE_Main

What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main

A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main

A man stands at a distance of 250m from a wall He shoots class 9 physics JEE_Main

Other Pages

The reaction of Zinc with dilute and concentrated nitric class 12 chemistry JEE_Main

The positive temperature coefficient of resistance class 11 physics JEE_Main

Which is the correct statement As the scharacter of class 11 chemistry JEE_Main

A shell explodes and many pieces fly in different directions class 11 physics JEE_Main

The bond order of ClO bond in ClO4 ion and the effective class 11 chemistry JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main