
A mass m attached to a spring oscillates every 2 sec. If the mass is increased by 2 kg, then time-period increases by 1 sec. The initial mass is
A. 1.6 kg
B. 3.9 kg
C. 9.6 kg
D. 12.6 kg
Answer
162.9k+ views
Hint: When the mass is attached to the spring, then the motion of the mass is simple harmonic motion with constant time period. The time taken to complete one oscillation is time period. Depending on the spring constant and the mass of the body attached the time period varies.
Formula used:
\[T = 2\pi \sqrt {\dfrac{m}{k}} \], here T is the period, k is the spring constant and m is the mass of the block.
Complete step by step solution:
For the initial case;
Let the spring constant of the spring used in the oscillation is K. The value of the mass is given as m. And the period of oscillator is 2sec
Then using the formula of period of spring-mass oscillator is,
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
\[2\sec = 2\pi \sqrt {\dfrac{m}{k}} \]
For the final case;
The mass of the block is increased by 2 kg, then the final mass of the block is \[\left( {m + 2} \right)kg\]. The spring constant is same as before.
So, using the formula of period of spring-mass oscillator, the final period is 1 sec greater than the initial period.
So, the final time period is \[{T_2} = 3\sec \]. Using the period formula,
\[{T_2} = 2\pi \sqrt {\dfrac{{{m_2}}}{{{k_2}}}} \]
\[3\sec = 2\pi \sqrt {\dfrac{{m + 2}}{k}} \]
On dividing the first case period with the second period, we get
\[\dfrac{{2\sec }}{{3\sec }} = \dfrac{{\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}{{2\pi \sqrt {\dfrac{{m + 2}}{k}} }}\]
\[\dfrac{2}{3} = \sqrt {\left( {\dfrac{m}{{m + 2}}} \right)} \]
On squaring both the sides, we get
\[\dfrac{4}{9} = \dfrac{m}{{m + 2}}\]
\[9m = 4m + 8\]
\[5m = 8\]
\[m = \dfrac{8}{5}\]
\[m = 1.6\]
So, the initial mass is \[1.6kg\]
Therefore, the correct option is (A).
Note: In the question the mass is increased by 2 kg, not twice. We should be careful while writing the relation between the final and initial quantity.
Formula used:
\[T = 2\pi \sqrt {\dfrac{m}{k}} \], here T is the period, k is the spring constant and m is the mass of the block.
Complete step by step solution:
For the initial case;
Let the spring constant of the spring used in the oscillation is K. The value of the mass is given as m. And the period of oscillator is 2sec
Then using the formula of period of spring-mass oscillator is,
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
\[2\sec = 2\pi \sqrt {\dfrac{m}{k}} \]
For the final case;
The mass of the block is increased by 2 kg, then the final mass of the block is \[\left( {m + 2} \right)kg\]. The spring constant is same as before.
So, using the formula of period of spring-mass oscillator, the final period is 1 sec greater than the initial period.
So, the final time period is \[{T_2} = 3\sec \]. Using the period formula,
\[{T_2} = 2\pi \sqrt {\dfrac{{{m_2}}}{{{k_2}}}} \]
\[3\sec = 2\pi \sqrt {\dfrac{{m + 2}}{k}} \]
On dividing the first case period with the second period, we get
\[\dfrac{{2\sec }}{{3\sec }} = \dfrac{{\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}{{2\pi \sqrt {\dfrac{{m + 2}}{k}} }}\]
\[\dfrac{2}{3} = \sqrt {\left( {\dfrac{m}{{m + 2}}} \right)} \]
On squaring both the sides, we get
\[\dfrac{4}{9} = \dfrac{m}{{m + 2}}\]
\[9m = 4m + 8\]
\[5m = 8\]
\[m = \dfrac{8}{5}\]
\[m = 1.6\]
So, the initial mass is \[1.6kg\]
Therefore, the correct option is (A).
Note: In the question the mass is increased by 2 kg, not twice. We should be careful while writing the relation between the final and initial quantity.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
