
When a man moves down the inclined plane with a constant speed with a $5\;{\text{m}}{{\text{s}}^{ - 1}}$ which makes an angle of $37^\circ $ with the horizontal, he finds that the rain is falling vertically downward. When he moves same up the same inclined plane with the same speed, he finds that the rain makes an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{7}{8}} \right)$ with the horizontal. The speed of the rain is:
A) $\sqrt {116} \;{\text{m}}{{\text{s}}^{ - 1}}$
B) $\sqrt {32} \;{\text{m}}{{\text{s}}^{ - 1}}$
C) $5\;{\text{m}}{{\text{s}}^{ - 1}}$
D) $\sqrt {73} \;{\text{m}}{{\text{s}}^{ - 1}}$
Answer
147.3k+ views
Hint: Here we use the concept of the relative motion. In the relative motion source moves relative to the observer or observer relative to the source.
Complete step by step answer:
Given: The angle of the incline is $\theta = 37^\circ $, the speed of the man is $v = 5\;{\text{m}}{{\text{s}}^{ - 1}}$, the angle of the ran for up to incline is $\alpha = {\tan ^{ - 1}}\left( {\dfrac{7}{8}} \right)$.
The velocity of man is given as,
$\Rightarrow$ ${V_m} = - \left( {v\cos \theta } \right)\hat i - \left( {v\sin \theta } \right)\hat j......\left( 1 \right)$
The velocity of the rain is given as,
$\Rightarrow$ ${v_r} = {v_x}\hat i - {v_y}\hat j.....\left( 2 \right)$
Here, ${v_x}$ and ${v_y}$ are components of the velocity of the rain along the x and y axis.
The velocity of the rain relative to man is given as,
$\Rightarrow$ ${v_{rm}} = {v_r} - {v_m}......\left( 3 \right)$
Rearrange the equation (1), equation (2) and equation (3).
$\Rightarrow$ ${v_{mr}} = \left[ {{v_x} + v\cos \theta } \right]\hat i + \left[ {{v_y} - v\sin \theta } \right]\hat j$
Substitute $v = 5\;{\text{m}}{{\text{s}}^{ - 1}}$ and $\theta = 37^\circ $in the equation (1) to find the relative velocity of the rain.
$\Rightarrow$ ${v_{rm}} = \left[ {{v_x} + \left( {5\;{\text{m}}{{\text{s}}^{ - 1}}} \right)\left( {\cos 37^\circ } \right)} \right]\hat i + \left[ {{v_y} - \left( {5\;{\text{m}}{{\text{s}}^{ - 1}}} \right)\left( {\sin 37^\circ } \right)} \right]\hat j$
$\Rightarrow$ ${v_{rm}} = \left( {{v_x} + 4\,{\text{m}}{{\text{s}}^{ - 1}}} \right)\hat i + \left( {{v_y} - 5\,{\text{m}}{{\text{s}}^{ - 1}}} \right)\hat j......\left( 4 \right)$
The rain is falling vertically downward while man moves down the incline plane, so the x component of the velocity of rain relative to man becomes zero.
Equate the x component of velocity in equation (4) to zero to find the x component of the velocity of the rain.
$\Rightarrow$ ${v_x} + 4\,{\text{m}}{{\text{s}}^{ - 1}} = 0$
$\Rightarrow$ ${v_x} = - 4\,{\text{m}}{{\text{s}}^{ - 1}}$
When the man is moving up the incline then the velocity of man is given as,
$\Rightarrow$ ${v_M} = \left( {v\cos \theta } \right)\hat i + \left( {v\sin \theta } \right)\hat j......\left( 5 \right)$
Rearrange the equation (2) and equation (5) to find the relative velocity of rain when man is moving up.
$\Rightarrow$ ${v_{rM}} = \left[ {{v_x} - v\cos \theta } \right]\hat i + \left[ { - {v_y} - v\sin \theta } \right]\hat j......\left( 6 \right)$
Substitute $v = 5\;{\text{m}}{{\text{s}}^{ - 1}}$ , ${v_x} = - 4\,{\text{m}}{{\text{s}}^{ - 1}}$and $\theta = 37^\circ $in the equation (6) to find the y component of the velocity of the rain.
$\Rightarrow$ ${v_{rM}} = \left[ { - 4\,{\text{m}}{{\text{s}}^{ - 1}} - \left( {5\;{\text{m}}{{\text{s}}^{ - 1}}} \right)\left( {\cos 37^\circ } \right)} \right]\hat i + \left[ {{v_y} - \left( {5\;{\text{m}}{{\text{s}}^{ - 1}}} \right)\left( {\sin 37^\circ } \right)} \right]\hat j$
$\Rightarrow$ ${v_{rM}} = \left( { - 8\,{\text{m}}{{\text{s}}^{ - 1}}} \right)\hat i + \left[ { - {v_y} - 3\,{\text{m}}{{\text{s}}^{ - 1}}} \right]\hat j......\left( 7 \right)$
The angle of the rain appears $\alpha = {\tan ^{ - 1}}\left( {\dfrac{7}{8}} \right)$ to man when man moves up to the plane.
Equate the y component of the relative velocity of the rain when man moves up to plane to y component of the appeared angle.
$\Rightarrow$ $ - {v_y} - 3\,{\text{m}}{{\text{s}}^{ - 1}} = - 7\;{\text{m}}{{\text{s}}^{ - 1}}$
$\Rightarrow$ ${v_y} = 4\;{\text{m}}{{\text{s}}^{ - 1}}$
Use the expression of resultant to find the speed of the rain is,
$\Rightarrow$ $V = \sqrt {v_x^2 + v_y^2} .........\left( 8 \right)$
Substitute ${v_x} = - 4\,{\text{m}}{{\text{s}}^{ - 1}}$ and ${v_y} = 4\;{\text{m}}{{\text{s}}^{ - 1}}$ in the equation (8) to find the velocity of rain.
$\Rightarrow$ $V = \sqrt {{{\left( { - 4\,{\text{m}}{{\text{s}}^{ - 1}}} \right)}^2} + \left( {4\,{\text{m}}{{\text{s}}^{ - 1}}} \right)} $
$\Rightarrow$ $V = \sqrt {32} \,{\text{m}}{{\text{s}}^{ - 1}}$
Therefore, the speed of the rain is $\sqrt {32} \,{\text{m}}{{\text{s}}^{ - 1}}$ and the option (B) is correct.
Note: Be careful to calculate the x and y components of the velocity of the rain and relative speed of the rain. Relative velocity is frame independent because it is the relative change.
Complete step by step answer:
Given: The angle of the incline is $\theta = 37^\circ $, the speed of the man is $v = 5\;{\text{m}}{{\text{s}}^{ - 1}}$, the angle of the ran for up to incline is $\alpha = {\tan ^{ - 1}}\left( {\dfrac{7}{8}} \right)$.
The velocity of man is given as,
$\Rightarrow$ ${V_m} = - \left( {v\cos \theta } \right)\hat i - \left( {v\sin \theta } \right)\hat j......\left( 1 \right)$
The velocity of the rain is given as,
$\Rightarrow$ ${v_r} = {v_x}\hat i - {v_y}\hat j.....\left( 2 \right)$
Here, ${v_x}$ and ${v_y}$ are components of the velocity of the rain along the x and y axis.
The velocity of the rain relative to man is given as,
$\Rightarrow$ ${v_{rm}} = {v_r} - {v_m}......\left( 3 \right)$
Rearrange the equation (1), equation (2) and equation (3).
$\Rightarrow$ ${v_{mr}} = \left[ {{v_x} + v\cos \theta } \right]\hat i + \left[ {{v_y} - v\sin \theta } \right]\hat j$
Substitute $v = 5\;{\text{m}}{{\text{s}}^{ - 1}}$ and $\theta = 37^\circ $in the equation (1) to find the relative velocity of the rain.
$\Rightarrow$ ${v_{rm}} = \left[ {{v_x} + \left( {5\;{\text{m}}{{\text{s}}^{ - 1}}} \right)\left( {\cos 37^\circ } \right)} \right]\hat i + \left[ {{v_y} - \left( {5\;{\text{m}}{{\text{s}}^{ - 1}}} \right)\left( {\sin 37^\circ } \right)} \right]\hat j$
$\Rightarrow$ ${v_{rm}} = \left( {{v_x} + 4\,{\text{m}}{{\text{s}}^{ - 1}}} \right)\hat i + \left( {{v_y} - 5\,{\text{m}}{{\text{s}}^{ - 1}}} \right)\hat j......\left( 4 \right)$
The rain is falling vertically downward while man moves down the incline plane, so the x component of the velocity of rain relative to man becomes zero.
Equate the x component of velocity in equation (4) to zero to find the x component of the velocity of the rain.
$\Rightarrow$ ${v_x} + 4\,{\text{m}}{{\text{s}}^{ - 1}} = 0$
$\Rightarrow$ ${v_x} = - 4\,{\text{m}}{{\text{s}}^{ - 1}}$
When the man is moving up the incline then the velocity of man is given as,
$\Rightarrow$ ${v_M} = \left( {v\cos \theta } \right)\hat i + \left( {v\sin \theta } \right)\hat j......\left( 5 \right)$
Rearrange the equation (2) and equation (5) to find the relative velocity of rain when man is moving up.
$\Rightarrow$ ${v_{rM}} = \left[ {{v_x} - v\cos \theta } \right]\hat i + \left[ { - {v_y} - v\sin \theta } \right]\hat j......\left( 6 \right)$
Substitute $v = 5\;{\text{m}}{{\text{s}}^{ - 1}}$ , ${v_x} = - 4\,{\text{m}}{{\text{s}}^{ - 1}}$and $\theta = 37^\circ $in the equation (6) to find the y component of the velocity of the rain.
$\Rightarrow$ ${v_{rM}} = \left[ { - 4\,{\text{m}}{{\text{s}}^{ - 1}} - \left( {5\;{\text{m}}{{\text{s}}^{ - 1}}} \right)\left( {\cos 37^\circ } \right)} \right]\hat i + \left[ {{v_y} - \left( {5\;{\text{m}}{{\text{s}}^{ - 1}}} \right)\left( {\sin 37^\circ } \right)} \right]\hat j$
$\Rightarrow$ ${v_{rM}} = \left( { - 8\,{\text{m}}{{\text{s}}^{ - 1}}} \right)\hat i + \left[ { - {v_y} - 3\,{\text{m}}{{\text{s}}^{ - 1}}} \right]\hat j......\left( 7 \right)$
The angle of the rain appears $\alpha = {\tan ^{ - 1}}\left( {\dfrac{7}{8}} \right)$ to man when man moves up to the plane.
Equate the y component of the relative velocity of the rain when man moves up to plane to y component of the appeared angle.
$\Rightarrow$ $ - {v_y} - 3\,{\text{m}}{{\text{s}}^{ - 1}} = - 7\;{\text{m}}{{\text{s}}^{ - 1}}$
$\Rightarrow$ ${v_y} = 4\;{\text{m}}{{\text{s}}^{ - 1}}$
Use the expression of resultant to find the speed of the rain is,
$\Rightarrow$ $V = \sqrt {v_x^2 + v_y^2} .........\left( 8 \right)$
Substitute ${v_x} = - 4\,{\text{m}}{{\text{s}}^{ - 1}}$ and ${v_y} = 4\;{\text{m}}{{\text{s}}^{ - 1}}$ in the equation (8) to find the velocity of rain.
$\Rightarrow$ $V = \sqrt {{{\left( { - 4\,{\text{m}}{{\text{s}}^{ - 1}}} \right)}^2} + \left( {4\,{\text{m}}{{\text{s}}^{ - 1}}} \right)} $
$\Rightarrow$ $V = \sqrt {32} \,{\text{m}}{{\text{s}}^{ - 1}}$
Therefore, the speed of the rain is $\sqrt {32} \,{\text{m}}{{\text{s}}^{ - 1}}$ and the option (B) is correct.
Note: Be careful to calculate the x and y components of the velocity of the rain and relative speed of the rain. Relative velocity is frame independent because it is the relative change.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
