
A function $f\left( x \right)$ is given by $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$. Find the sum of the series $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$.
A. $\dfrac{{19}}{2}$
B. $\dfrac{{49}}{2}$
C. $\dfrac{{39}}{2}$
D. $\dfrac{{29}}{2}$
Answer
161.1k+ views
Hint: First we will put $x = 2 - x$ in the given function. Then we will combine $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{{39}}{{20}}} \right)$, $f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{{38}}{{20}}} \right)$, and put the value of each sum to calculate the value of given series.
Complete step by step solution:
Given series is $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$.
Now putting $x = 2 - x$ in the function $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$
$f\left( {2 - x} \right) = \dfrac{{{5^{2 - x}}}}{{{5^{2 - x}} + 5}}$
$ = \dfrac{{\dfrac{{{5^2}}}{{{5^x}}}}}{{\dfrac{{{5^2}}}{{{5^x}}} + 5}}$
$ = \dfrac{{{5^2}}}{{{5^2} + 5 \cdot {5^x}}}$
Taking common 5 from the denominator and numerator
$ = \dfrac{{5 \cdot 5}}{{5\left( {5 + {5^x}} \right)}}$
Cancel out 5 from the denominator and numerator
$ = \dfrac{5}{{5 + {5^x}}}$
So, $f\left( x \right) + f\left( {2 - x} \right) = \dfrac{{{5^x}}}{{{5^x} + 5}} + \dfrac{5}{{{5^x} + 5}}$
$ = \dfrac{{{5^x} + 5}}{{{5^x} + 5}}$
$ = 1$
Rewrite the given series $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$
$f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$
$ = \left[ {f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{{39}}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{{38}}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{3}{{20}}} \right) + f\left( {\dfrac{{37}}{{20}}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{19}}{{20}}} \right) + f\left( {\dfrac{{21}}{{20}}} \right)} \right] + f\left( {\dfrac{{20}}{{20}}} \right)$
$ = \left[ {f\left( {\dfrac{1}{{20}}} \right) + f\left( {2 - \dfrac{1}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{2}{{20}}} \right) + f\left( {2 - \dfrac{2}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{3}{{20}}} \right) + f\left( {2 - \dfrac{3}{{20}}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{19}}{{20}}} \right) + f\left( {2 - \dfrac{{19}}{{20}}} \right)} \right] + f\left( {\dfrac{{20}}{{20}}} \right)$$ = 1 + 1 + 1 + \cdots + 1 + f\left( 1 \right)$
Now putting $x = 1$ in $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{{{5^1}}}{{{5^1} + 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{5}{{2 \cdot 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{1}{2}$
$ \Rightarrow 19 + \dfrac{1}{2}$
$ \Rightarrow \dfrac{{39}}{2}$
Option ‘B’ is correct
Note: We often tend to calculate the value of $1 + 1 + 1 + \cdots + 1 + f\left( 1 \right)$ and count as 39’s 1. But we make 19 groups and each group contains 2 functions. So there are 19’s 1.
Complete step by step solution:
Given series is $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$.
Now putting $x = 2 - x$ in the function $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$
$f\left( {2 - x} \right) = \dfrac{{{5^{2 - x}}}}{{{5^{2 - x}} + 5}}$
$ = \dfrac{{\dfrac{{{5^2}}}{{{5^x}}}}}{{\dfrac{{{5^2}}}{{{5^x}}} + 5}}$
$ = \dfrac{{{5^2}}}{{{5^2} + 5 \cdot {5^x}}}$
Taking common 5 from the denominator and numerator
$ = \dfrac{{5 \cdot 5}}{{5\left( {5 + {5^x}} \right)}}$
Cancel out 5 from the denominator and numerator
$ = \dfrac{5}{{5 + {5^x}}}$
So, $f\left( x \right) + f\left( {2 - x} \right) = \dfrac{{{5^x}}}{{{5^x} + 5}} + \dfrac{5}{{{5^x} + 5}}$
$ = \dfrac{{{5^x} + 5}}{{{5^x} + 5}}$
$ = 1$
Rewrite the given series $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$
$f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$
$ = \left[ {f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{{39}}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{{38}}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{3}{{20}}} \right) + f\left( {\dfrac{{37}}{{20}}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{19}}{{20}}} \right) + f\left( {\dfrac{{21}}{{20}}} \right)} \right] + f\left( {\dfrac{{20}}{{20}}} \right)$
$ = \left[ {f\left( {\dfrac{1}{{20}}} \right) + f\left( {2 - \dfrac{1}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{2}{{20}}} \right) + f\left( {2 - \dfrac{2}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{3}{{20}}} \right) + f\left( {2 - \dfrac{3}{{20}}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{19}}{{20}}} \right) + f\left( {2 - \dfrac{{19}}{{20}}} \right)} \right] + f\left( {\dfrac{{20}}{{20}}} \right)$$ = 1 + 1 + 1 + \cdots + 1 + f\left( 1 \right)$
Now putting $x = 1$ in $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{{{5^1}}}{{{5^1} + 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{5}{{2 \cdot 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{1}{2}$
$ \Rightarrow 19 + \dfrac{1}{2}$
$ \Rightarrow \dfrac{{39}}{2}$
Option ‘B’ is correct
Note: We often tend to calculate the value of $1 + 1 + 1 + \cdots + 1 + f\left( 1 \right)$ and count as 39’s 1. But we make 19 groups and each group contains 2 functions. So there are 19’s 1.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Trending doubts
JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

JEE Main B.Arch Cut Off Percentile 2025

JoSAA Counselling 2025: Registration Dates OUT, Eligibility Criteria, Cutoffs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

List of Fastest Century in IPL History
