
A body of mass $2Kg$ is driven by an engine delivering a constant power of $1J/s$.The body starts from rest and moves in a straight line. After $9$ seconds, the body has moved a distance (in m) ………………….?
Answer
161.4k+ views
Hint: Since the problem is based on kinetic energy and work-energy theorem, consider the effect of power used to drive the body on kinetic energy (i.e., velocity). As we all know that the parameters vary with each other hence, analyze every aspect of the solution needed for the question and then present the answer with a proper explanation.
Formula used:
The work-energy theorem is represented as $W = {K_f} - {K_i}$.
And, the formula of power is given by:
$\text{Power(P)} = \dfrac{\text{Work done(W)}}{\text{Time(t)}}$
Complete step by step solution:
In this question, we have given the mass of a body, $m = 2kg$
Body drove by a constant power of $P = 1J/s$
Applying the Work-Energy theorem, $W = {K_f} - {K_i}$
Here, Initial Kinetic Energy be ${K_i}$and final kinetic energy be ${K_f}$
But, according to the question as the body starts from rest, the initial kinetic energy ${K_i} = 0$
$\therefore W = {K_f} = \dfrac{1}{2}m{v^2}$ … (1)
Also, we know $\text{Power(P)} = \dfrac{\text{Work done(W)}}{\text{Time(t)}}$ , then:
$W = P \times t$ … (2)
Equating (1) and (2), we get
$\dfrac{1}{2}m{v^2} = P \times t \\$
$\Rightarrow {v^2} = \dfrac{{2 \times P \times t}}{m} \\$
$\Rightarrow v = \sqrt {\dfrac{{2Pt}}{m}} \\$
But, $v = \dfrac{{ds}}{{dt}}$ means the rate of change in distance. Substituting this value in the above expression we get
$\dfrac{{ds}}{{dt}} = \sqrt {\dfrac{{2Pt}}{m}} \\$
$\Rightarrow ds = \sqrt {\dfrac{{2Pt}}{m}} \cdot dt \\$
Integrating both sides by applying power rule $\left( {\therefore \int {{x^n}.dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right)$ , we obtain:
$\Rightarrow \int\limits_0^s {ds} = \int\limits_0^t {\sqrt {\dfrac{{2Pt}}{m}} \cdot dt} \\$
$\Rightarrow (s - 0) = \sqrt {\dfrac{{2P}}{m}} \left( {\dfrac{{2{{(t - 0)}^{\dfrac{3}{2}}}}}{3}} \right) \\$
$\Rightarrow s = \sqrt {\dfrac{{2P}}{m}} \left( {\dfrac{{2{t^{\dfrac{3}{2}}}}}{3}} \right) \\$
Substituting the values of $m$ and $P$ from question, we get
At $t = 9s$,
$\Rightarrow s = \sqrt {\dfrac{{2(1)}}{{(2)}}} \left( {\dfrac{{2{{(9)}^{\dfrac{3}{2}}}}}{3}} \right) \\$
$\Rightarrow s = \dfrac{{2{{(3)}^3}}}{3} \\$
Thus, the distance after $9$ seconds will be:
$ \therefore s = 18m$
Hence, after $9$ seconds, the body has moved a distance of $18m$.
Note: This is a numerical problem based on the application of the work-energy theorem hence, it is essential that the given question is to be analyzed very carefully to give an accurate solution. While solving the question, take power used as an important factor and correlate the terms used with each other that might help in the solution.
Formula used:
The work-energy theorem is represented as $W = {K_f} - {K_i}$.
And, the formula of power is given by:
$\text{Power(P)} = \dfrac{\text{Work done(W)}}{\text{Time(t)}}$
Complete step by step solution:
In this question, we have given the mass of a body, $m = 2kg$
Body drove by a constant power of $P = 1J/s$
Applying the Work-Energy theorem, $W = {K_f} - {K_i}$
Here, Initial Kinetic Energy be ${K_i}$and final kinetic energy be ${K_f}$
But, according to the question as the body starts from rest, the initial kinetic energy ${K_i} = 0$
$\therefore W = {K_f} = \dfrac{1}{2}m{v^2}$ … (1)
Also, we know $\text{Power(P)} = \dfrac{\text{Work done(W)}}{\text{Time(t)}}$ , then:
$W = P \times t$ … (2)
Equating (1) and (2), we get
$\dfrac{1}{2}m{v^2} = P \times t \\$
$\Rightarrow {v^2} = \dfrac{{2 \times P \times t}}{m} \\$
$\Rightarrow v = \sqrt {\dfrac{{2Pt}}{m}} \\$
But, $v = \dfrac{{ds}}{{dt}}$ means the rate of change in distance. Substituting this value in the above expression we get
$\dfrac{{ds}}{{dt}} = \sqrt {\dfrac{{2Pt}}{m}} \\$
$\Rightarrow ds = \sqrt {\dfrac{{2Pt}}{m}} \cdot dt \\$
Integrating both sides by applying power rule $\left( {\therefore \int {{x^n}.dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right)$ , we obtain:
$\Rightarrow \int\limits_0^s {ds} = \int\limits_0^t {\sqrt {\dfrac{{2Pt}}{m}} \cdot dt} \\$
$\Rightarrow (s - 0) = \sqrt {\dfrac{{2P}}{m}} \left( {\dfrac{{2{{(t - 0)}^{\dfrac{3}{2}}}}}{3}} \right) \\$
$\Rightarrow s = \sqrt {\dfrac{{2P}}{m}} \left( {\dfrac{{2{t^{\dfrac{3}{2}}}}}{3}} \right) \\$
Substituting the values of $m$ and $P$ from question, we get
At $t = 9s$,
$\Rightarrow s = \sqrt {\dfrac{{2(1)}}{{(2)}}} \left( {\dfrac{{2{{(9)}^{\dfrac{3}{2}}}}}{3}} \right) \\$
$\Rightarrow s = \dfrac{{2{{(3)}^3}}}{3} \\$
Thus, the distance after $9$ seconds will be:
$ \therefore s = 18m$
Hence, after $9$ seconds, the body has moved a distance of $18m$.
Note: This is a numerical problem based on the application of the work-energy theorem hence, it is essential that the given question is to be analyzed very carefully to give an accurate solution. While solving the question, take power used as an important factor and correlate the terms used with each other that might help in the solution.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
