
A body of mass $2Kg$ is driven by an engine delivering a constant power of $1J/s$.The body starts from rest and moves in a straight line. After $9$ seconds, the body has moved a distance (in m) ………………….?
Answer
226.8k+ views
Hint: Since the problem is based on kinetic energy and work-energy theorem, consider the effect of power used to drive the body on kinetic energy (i.e., velocity). As we all know that the parameters vary with each other hence, analyze every aspect of the solution needed for the question and then present the answer with a proper explanation.
Formula used:
The work-energy theorem is represented as $W = {K_f} - {K_i}$.
And, the formula of power is given by:
$\text{Power(P)} = \dfrac{\text{Work done(W)}}{\text{Time(t)}}$
Complete step by step solution:
In this question, we have given the mass of a body, $m = 2kg$
Body drove by a constant power of $P = 1J/s$
Applying the Work-Energy theorem, $W = {K_f} - {K_i}$
Here, Initial Kinetic Energy be ${K_i}$and final kinetic energy be ${K_f}$
But, according to the question as the body starts from rest, the initial kinetic energy ${K_i} = 0$
$\therefore W = {K_f} = \dfrac{1}{2}m{v^2}$ … (1)
Also, we know $\text{Power(P)} = \dfrac{\text{Work done(W)}}{\text{Time(t)}}$ , then:
$W = P \times t$ … (2)
Equating (1) and (2), we get
$\dfrac{1}{2}m{v^2} = P \times t \\$
$\Rightarrow {v^2} = \dfrac{{2 \times P \times t}}{m} \\$
$\Rightarrow v = \sqrt {\dfrac{{2Pt}}{m}} \\$
But, $v = \dfrac{{ds}}{{dt}}$ means the rate of change in distance. Substituting this value in the above expression we get
$\dfrac{{ds}}{{dt}} = \sqrt {\dfrac{{2Pt}}{m}} \\$
$\Rightarrow ds = \sqrt {\dfrac{{2Pt}}{m}} \cdot dt \\$
Integrating both sides by applying power rule $\left( {\therefore \int {{x^n}.dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right)$ , we obtain:
$\Rightarrow \int\limits_0^s {ds} = \int\limits_0^t {\sqrt {\dfrac{{2Pt}}{m}} \cdot dt} \\$
$\Rightarrow (s - 0) = \sqrt {\dfrac{{2P}}{m}} \left( {\dfrac{{2{{(t - 0)}^{\dfrac{3}{2}}}}}{3}} \right) \\$
$\Rightarrow s = \sqrt {\dfrac{{2P}}{m}} \left( {\dfrac{{2{t^{\dfrac{3}{2}}}}}{3}} \right) \\$
Substituting the values of $m$ and $P$ from question, we get
At $t = 9s$,
$\Rightarrow s = \sqrt {\dfrac{{2(1)}}{{(2)}}} \left( {\dfrac{{2{{(9)}^{\dfrac{3}{2}}}}}{3}} \right) \\$
$\Rightarrow s = \dfrac{{2{{(3)}^3}}}{3} \\$
Thus, the distance after $9$ seconds will be:
$ \therefore s = 18m$
Hence, after $9$ seconds, the body has moved a distance of $18m$.
Note: This is a numerical problem based on the application of the work-energy theorem hence, it is essential that the given question is to be analyzed very carefully to give an accurate solution. While solving the question, take power used as an important factor and correlate the terms used with each other that might help in the solution.
Formula used:
The work-energy theorem is represented as $W = {K_f} - {K_i}$.
And, the formula of power is given by:
$\text{Power(P)} = \dfrac{\text{Work done(W)}}{\text{Time(t)}}$
Complete step by step solution:
In this question, we have given the mass of a body, $m = 2kg$
Body drove by a constant power of $P = 1J/s$
Applying the Work-Energy theorem, $W = {K_f} - {K_i}$
Here, Initial Kinetic Energy be ${K_i}$and final kinetic energy be ${K_f}$
But, according to the question as the body starts from rest, the initial kinetic energy ${K_i} = 0$
$\therefore W = {K_f} = \dfrac{1}{2}m{v^2}$ … (1)
Also, we know $\text{Power(P)} = \dfrac{\text{Work done(W)}}{\text{Time(t)}}$ , then:
$W = P \times t$ … (2)
Equating (1) and (2), we get
$\dfrac{1}{2}m{v^2} = P \times t \\$
$\Rightarrow {v^2} = \dfrac{{2 \times P \times t}}{m} \\$
$\Rightarrow v = \sqrt {\dfrac{{2Pt}}{m}} \\$
But, $v = \dfrac{{ds}}{{dt}}$ means the rate of change in distance. Substituting this value in the above expression we get
$\dfrac{{ds}}{{dt}} = \sqrt {\dfrac{{2Pt}}{m}} \\$
$\Rightarrow ds = \sqrt {\dfrac{{2Pt}}{m}} \cdot dt \\$
Integrating both sides by applying power rule $\left( {\therefore \int {{x^n}.dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right)$ , we obtain:
$\Rightarrow \int\limits_0^s {ds} = \int\limits_0^t {\sqrt {\dfrac{{2Pt}}{m}} \cdot dt} \\$
$\Rightarrow (s - 0) = \sqrt {\dfrac{{2P}}{m}} \left( {\dfrac{{2{{(t - 0)}^{\dfrac{3}{2}}}}}{3}} \right) \\$
$\Rightarrow s = \sqrt {\dfrac{{2P}}{m}} \left( {\dfrac{{2{t^{\dfrac{3}{2}}}}}{3}} \right) \\$
Substituting the values of $m$ and $P$ from question, we get
At $t = 9s$,
$\Rightarrow s = \sqrt {\dfrac{{2(1)}}{{(2)}}} \left( {\dfrac{{2{{(9)}^{\dfrac{3}{2}}}}}{3}} \right) \\$
$\Rightarrow s = \dfrac{{2{{(3)}^3}}}{3} \\$
Thus, the distance after $9$ seconds will be:
$ \therefore s = 18m$
Hence, after $9$ seconds, the body has moved a distance of $18m$.
Note: This is a numerical problem based on the application of the work-energy theorem hence, it is essential that the given question is to be analyzed very carefully to give an accurate solution. While solving the question, take power used as an important factor and correlate the terms used with each other that might help in the solution.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mass vs Weight: Key Differences Explained for Students

Circuit Switching vs Packet Switching: Key Differences Explained

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

