
A bag contains \[{\text{5}}\] white balls, \[{\text{6}}\] red balls and \[{\text{9}}\] green balls a ball is drawn at random from the bag. Find the probability that the ball drawn is:
\[\left( i \right)\] A green ball
\[\left( {ii} \right)\] A white or a red ball
\[\left( {iii} \right)\] Is neither a green ball nor a white ball
Answer
221.1k+ views
Hint: - Here, we find favorable outcomes and total no of outcomes to proceed further.
First of all we have to calculate total number of ball in a bag ${\text{ = 5W + 6R + 9G = 20}}$balls
Here ${\text{W = }}$white balls, ${\text{R = }}$red balls and ${\text{G = }}$green balls
This is the total no of outcome when one ball is drawn ${\text{ = 20}}$outcomes
\[\left( i \right)\] Favorable outcome of green ball ${\text{ = }}$ there are ${\text{9}}$ green balls${\text{ = 9}}$
$\therefore P({\text{getting a green ball) = }}\dfrac{{{\text{favorable outcome}}}}{{{\text{total outcome}}}} = \dfrac{9}{{20}}$
\[\left( {ii} \right)\] Favorable outcome of white ball${\text{ = }}$ there are$5$ white ball ${\text{ = 5}}$
Favorable outcome of red ball${\text{ = }}$ there are$6$ red ball ${\text{ = 6}}$
$\therefore P({\text{getting a white ball or red ball) = }}P({\text{getting red) + }}P({\text{getting white)}}$ ${\text{ = }}\dfrac{{{\text{favorable outcome of red}}}}{{{\text{total number of outcome}}}} + \dfrac{{{\text{favorable outcome of white}}}}{{{\text{total number of outcome}}}}$
${\text{ = }}\dfrac{6}{{20}} + \dfrac{5}{{20}}$
\[\left( {iii} \right)\] Neither green nor white, it means only red
$\therefore P({\text{neither green nor white}}) = P(red)$
${\text{ = }}\dfrac{{{\text{favorable outcome of red}}}}{{{\text{total number of outcome}}}}$
${\text{ = }}\dfrac{6}{{20}} = \dfrac{3}{{10}}$
Note:- Whenever such types of questions are given to find the probability you have to always calculate the favorable outcome and total number of outcomes to find the probability of the given statement.
First of all we have to calculate total number of ball in a bag ${\text{ = 5W + 6R + 9G = 20}}$balls
Here ${\text{W = }}$white balls, ${\text{R = }}$red balls and ${\text{G = }}$green balls
This is the total no of outcome when one ball is drawn ${\text{ = 20}}$outcomes
\[\left( i \right)\] Favorable outcome of green ball ${\text{ = }}$ there are ${\text{9}}$ green balls${\text{ = 9}}$
$\therefore P({\text{getting a green ball) = }}\dfrac{{{\text{favorable outcome}}}}{{{\text{total outcome}}}} = \dfrac{9}{{20}}$
\[\left( {ii} \right)\] Favorable outcome of white ball${\text{ = }}$ there are$5$ white ball ${\text{ = 5}}$
Favorable outcome of red ball${\text{ = }}$ there are$6$ red ball ${\text{ = 6}}$
$\therefore P({\text{getting a white ball or red ball) = }}P({\text{getting red) + }}P({\text{getting white)}}$ ${\text{ = }}\dfrac{{{\text{favorable outcome of red}}}}{{{\text{total number of outcome}}}} + \dfrac{{{\text{favorable outcome of white}}}}{{{\text{total number of outcome}}}}$
${\text{ = }}\dfrac{6}{{20}} + \dfrac{5}{{20}}$
\[\left( {iii} \right)\] Neither green nor white, it means only red
$\therefore P({\text{neither green nor white}}) = P(red)$
${\text{ = }}\dfrac{{{\text{favorable outcome of red}}}}{{{\text{total number of outcome}}}}$
${\text{ = }}\dfrac{6}{{20}} = \dfrac{3}{{10}}$
Note:- Whenever such types of questions are given to find the probability you have to always calculate the favorable outcome and total number of outcomes to find the probability of the given statement.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

