Answer
Verified
85.5k+ views
Hint: This problem can be solved by permutations. A Permutation of a set is an arrangement of its members into a sequence or linear ordered, a rearrangement of its elements.
Here we have to arrange $7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together.
We know that \[n\] things can be arranged around a round table in \[\left( {n - 1} \right)!\] ways
First, we arrange $7$ gentlemen at a round table in \[6!\] ways
Then we arrange $4$ ladies so that two particular ladies may not sit together.
We know that if \[m\] gentlemen and \[n\] ladies are to be seated at a round table so that two particular ladies may not sit together can be arranged in \[{}^m{P_n}\] ways.
There are $7$ gaps between men and $4$ ladies are to be placed.
By using the above formula this can be done in \[{}^7{P_4}\] ways.
Therefore, that total arrangement can be done in \[6!{}^7{P_4}\] ways.
Thus the answer is option (c) \[6!{}^7{P_4}\] ways.
Note: In this problem we have used multiplicative principle of permutation i.e. if there are \[x\] ways of doing one thing and \[y\] ways of doing another, then the total number of ways of doing both the things is \[xy\] ways.
Here we have to arrange $7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together.
We know that \[n\] things can be arranged around a round table in \[\left( {n - 1} \right)!\] ways
First, we arrange $7$ gentlemen at a round table in \[6!\] ways
Then we arrange $4$ ladies so that two particular ladies may not sit together.
We know that if \[m\] gentlemen and \[n\] ladies are to be seated at a round table so that two particular ladies may not sit together can be arranged in \[{}^m{P_n}\] ways.
There are $7$ gaps between men and $4$ ladies are to be placed.
By using the above formula this can be done in \[{}^7{P_4}\] ways.
Therefore, that total arrangement can be done in \[6!{}^7{P_4}\] ways.
Thus the answer is option (c) \[6!{}^7{P_4}\] ways.
Note: In this problem we have used multiplicative principle of permutation i.e. if there are \[x\] ways of doing one thing and \[y\] ways of doing another, then the total number of ways of doing both the things is \[xy\] ways.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A vector of 10N makes an angle of 30circ with positive class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a gas expands at constant temperature it indicates class 11 chemistry JEE_Main
The reaction of Zinc with dilute and concentrated nitric class 12 chemistry JEE_Main