
$7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together in
(a) \[7!3!2!{\text{ ways}}\]
(b) \[6! {}^6{P_4}\] ways
(c) \[6! {}^7{P_4}\] ways
(d) \[6! {}^4{P_2}\] ways
Answer
214.2k+ views
Hint: This problem can be solved by permutations. A Permutation of a set is an arrangement of its members into a sequence or linear ordered, a rearrangement of its elements.
Here we have to arrange $7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together.
We know that \[n\] things can be arranged around a round table in \[\left( {n - 1} \right)!\] ways
First, we arrange $7$ gentlemen at a round table in \[6!\] ways
Then we arrange $4$ ladies so that two particular ladies may not sit together.
We know that if \[m\] gentlemen and \[n\] ladies are to be seated at a round table so that two particular ladies may not sit together can be arranged in \[{}^m{P_n}\] ways.
There are $7$ gaps between men and $4$ ladies are to be placed.
By using the above formula this can be done in \[{}^7{P_4}\] ways.
Therefore, that total arrangement can be done in \[6!{}^7{P_4}\] ways.
Thus the answer is option (c) \[6!{}^7{P_4}\] ways.
Note: In this problem we have used multiplicative principle of permutation i.e. if there are \[x\] ways of doing one thing and \[y\] ways of doing another, then the total number of ways of doing both the things is \[xy\] ways.
Here we have to arrange $7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together.
We know that \[n\] things can be arranged around a round table in \[\left( {n - 1} \right)!\] ways
First, we arrange $7$ gentlemen at a round table in \[6!\] ways
Then we arrange $4$ ladies so that two particular ladies may not sit together.
We know that if \[m\] gentlemen and \[n\] ladies are to be seated at a round table so that two particular ladies may not sit together can be arranged in \[{}^m{P_n}\] ways.
There are $7$ gaps between men and $4$ ladies are to be placed.
By using the above formula this can be done in \[{}^7{P_4}\] ways.
Therefore, that total arrangement can be done in \[6!{}^7{P_4}\] ways.
Thus the answer is option (c) \[6!{}^7{P_4}\] ways.
Note: In this problem we have used multiplicative principle of permutation i.e. if there are \[x\] ways of doing one thing and \[y\] ways of doing another, then the total number of ways of doing both the things is \[xy\] ways.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Average and RMS Value in Physics: Formula, Comparison & Application

