Courses for Kids
Free study material
Offline Centres
Store Icon


Last updated date: 20th Apr 2024
Total views: 325.5k
Views today: 4.25k
hightlight icon
highlight icon
highlight icon
share icon
copy icon

The Study of Metapopulation

In Encyclopedia of Biodiversity (Second Edition), 2013, Peter Chesson studied metapopulations. Metapopulation deals with the patchiness of populations in space. He also studied in the book the role of this patchiness in the population dynamics, the population stability, and coexistence of different species, and thus the maintenance of diversity. If we talk about strict metapopulation studies, it will only focus on the patchiness which is due to colonization and extinction of local populations in a region.

The Studies of metapopulations emphasize that patchiness which alters the population dynamics by which also changes the outcomes of the species interactions. Further, we will proceed on to studying more about ‘Metapopulation’.

Metapopulation Definition

[Image will be Uploaded Soon]

Metapopulation or Metapopulation ecology is a regional group of populations that are connected with species. For a single species, each of the metapopulations is continually modified by the increase in births and immigrations and it gets continually decreased by deaths and emigrations of the present individuals in the group. These local populations of a given species quite fluctuate in their size, they become very much vulnerable to its extinction in the periods when their numbers are quite low. The Extinction of local populations is evident in some species. The elimination of the metapopulation of the structure of these species can increase the prosperity of regional extinction of these species.

This structure of metapopulations quite varies among the species. Particularly in some species, this is quite stable over time and they act as the source of recruits into the other, they are the less stable populations. 

Metapopulation Dynamics 

Metapopulation Dynamics definition, as previously defined by Levin's includes the extinction and colonization of the local populations. His theory suggested that the process can be affected by demographic persistence, its existence of interacting species, its genetic variation, and evolution.  

Metapopulation biology is very much concerned with its dynamic consequences of the migration among the local people and the conditions of its regional persistence of the species with the unstable local population growth. This is a well-established habitat patch area and the isolation on migration, colonization and population extinction became integrated with classic metapopulation dynamics. Metapopulation Dynamics has led the models which have been used to predict the movement patterns of the individuals, the dynamics of the species, and also the distributional patterns in the multispecies of communities in the real fragmented landscapes.

Mainland Island Metapopulation 

We adapt to different ecological environments, through divergent selection and generate phenotypic and genetic differences between these populations. The changes eventually give rise to these new species. The speciation process is generally quantitative in nature. This is being represented by a lot of studies that show that divergence during the speciation quite varies continuously, and this sequence of genetically-based changes occur as two lineages on the pathway to reproductive isolation diverge from each other. Divergent evolution and reproductive isolation are the two primary elements of speciation which many have recognized that reproductive isolation is generally a signature effect that is rather than a primary cause of speciation.

Further detailing about the Levin's’ metapopulation study, we get to know the generalization majorly consists of the introduction of immigration, which is generally from a mainland and the assumption of the dynamics is stochastic, rather than deterministic. 

We will derive an equation for this probability is - n of the patches that are occupied, is derived and Ps(n) is the stationary probability, which together means and higher moments in the stationary state, determined. 

The time dependence of this probability distribution is also studied: through the Gaussian approximation which is generally n when the boundary is at n = 0 and has little effect, thus, by calculating P (0, t), the probability got no patches. They are occupied at a time which is denoted by t, and by using the linearization procedure. These analytic calculations are then supplemented by calculating the numerical solutions of the master equation and simulations of the stochastic process. All these various approaches are quite consistent with each other. 

We can use the forms for Ps and P (0, t) which are in the linearization and approximation which are the bases for calculating the meantime for a metapopulation to get extinct. We also give an analytical expression which is for the meantime to extinct the derived that is within the mean-field approach. We chalk out a simple method in order to apply our mean-field approach which is even complex patch networks in the realistic model metapopulations. Also, after studying a lattice metapopulation model and also a spatially realistic model, we can thereby conclude the analytical formula required for the mean extinction time is normally applicable to those metapopulations that are really endangered. 

FAQs on Metapopulation

1. Give Some Examples of the Metapopulation.

Ans. Populations of the butterflies and also the population of the coral reef fishes can serve as good examples of metapopulation. Human activities and other natural disasters are actually the main cause for metapopulation and this increases the population which occurs as metapopulations. All these factors are responsible for the fragmentation of a huge habitat into different patches.

Metapopulation theory defined as a large population that includes single species and are most stable over a larger area when is then divided up into smaller subpopulations categories. 

2. What do You Mean by Species?

Ans. Species, as defined in the subject of biology refer to the classification which comprises the related organisms which shares common characteristics and which are capable of interbreeding among each other. The biological species concept is very much widely interpreted in biology and in its related fields of study. A biological species is actually a group of organisms who can reproduce with one another in nature and also can produce and fertile its offspring. The term species are also defined as the basic category in the system which is related to taxonomy. 

This group of population or the populations in which the members have common characteristics and are quite capable of interbreeding with each other to produce their fertile off-springs which are normally, the members of a particular species breed amongst themselves and not with any other members of other species.

3. Why is it Important to Study Metapopulation?

Ans. Metapopulations are studied mainly useful while discussing the species which have disturbed habitats, and the viability of their populations, which indicates when the population is likely to get extinct in the near future.