Production and Use of Chlorine

What is Chlorine?

Chlorine is a dense green-yellow gas with a strong odour. It has twice the density of air. The symbol of Chlorine is 'Cl' and it belongs to the halogen group. Chlorine was discovered in the 1770s and became a commercial agent ever since. It is easily detected in its natural state. Since it is toxic at low concentrations, it should be treated with caution. Due to its highly toxic nature, it has been used as a chemical weapon in wars.

The molecular formula of Chlorine gas Cl2.


Uses of Chlorine gas 

  • During the First World War, the Germans used chlorine gas as a chemical weapon against the allied forces.

  • Chlorine is most commonly used in wastewater treatment for disinfection.

  • In the activated sludge phase, it is used to monitor odours and filamentous species.

  • Despite this, it is most widely used in disinfection methods of preventing the spread of waterborne diseases.


Production and Use of Chlorine 

Here is a brief on Chlorine production and use (some main methods and applications).


[Image will be uploaded soon]


Typically, rock salt deposits are mined; on rare occasions, water is pumped down, and brine containing around 25% sodium chloride is brought to the surface. Impurities separate first and can be absorbed as the brine evaporates. In warm climates, salt is made by the Sun evaporating shallow seawater, resulting in bay salt.

Chlorine is processed on a large scale using a variety of methods, including:

1. Electrolysis of Concentrated Sodium Chloride Solution in Water:

The cathode produces hydrogen, while the anode produces Chlorine. Since sodium hydroxide is formed in the electrolyte simultaneously, this process is known as chlorine-alkali electrolysis.

The following equations describe the chemical reactions that occur at each electrode as well as the overall cell process:

At Cathode (Iron Cathode) = 2H20 + 2e- 2OH + H2

At Anode (Graphite Anode) = 2Cl- Cl2 + 2e-

Cell Process = 2H20 + 2Cl- 2OH- + H2 + Cl2

The symbol e- represents a single electron. Free Chlorine and hydroxide ions should not come into contact in the reaction tank; otherwise, Chlorine would be absorbed due to the reaction.

Cl2 + 2OH- (ClO)- + Cl- + H2O

One can insert a porous wall between the electrodes to separate the chlorine gas. The hydroxide ion (diaphragm process), or the iron cathode, is substituted with a mercury cathode (mercury cathode process), which prevents the formation of hydroxide ions at the electrode. Instead, at the cathode, free sodium is discharged, and this metal readily dissolves in mercury, forming an amalgam, as shown below:

2Na+ + 2e- 2Na (amalgam)

The amalgam can then react with the water outside the cell as:

2Na (amalgam) + 2H2O 2Na+ + 2OH- + H2

This entire process is equivalent to the cell process.


2. Electrolysis of Fused Sodium Chloride:

It also contains metallic sodium, and at the anode, Chlorine is emitted once more.


3. Electrolysis of Fused Magnesium Chloride:

Chlorine is generated as a by-product of the Production of metallic magnesium in this process.


4. Hydrogen Chloride's Oxidation:

As seen in the following equation, gaseous hydrogen chloride mixed with air or oxygen is passed over pumice in contact with cupric chloride as a catalyst:

4HCl + O2 (in presence of catalyst) ⇔ 2H2O + 2Cl2

With increasing temperature, the equilibrium constant for this reaction decreases, implying that the reaction continues more slowly at higher temperatures. However, to achieve a fair conversion rate, a temperature of 400 °C (750 °F) is needed in practice.



5. The Reaction Between Solid Chloride and Manganese Dioxide:

The method of producing Chlorine from a mixture of almost any solid chloride and manganese dioxide (MnO2) when heated with concentrated sulfuric acid (H2SO4) is historically interesting. The following is how the reaction happens:

2NaCl + 3H2SO4 + MnO2 MnSO2 + 2NaHSO4 + 2H2O + Cl2

FAQs (Frequently Asked Questions)

1. Mention Some Common Ways For the Determination of Free Chlorine and Chloride Ions in Any Compound.

Ans: Smell, odour, colour, and some other characteristics mark the presence of Chlorine in a compound. Some tests to determine the presence of chloride ions are:

  1. Formation of a white precipitate of silver chloride (AgCl) while adding Silver Nitrate (AgNO) in a dilute mixture of nitric acid (HNO3).

  2. Heating a solid sample with potassium dichromate (K2Cr2O7) and concentrated sulfuric acid produces chromyl chloride (CrO2Cl2), a red gas. A yellow chromate solution is formed when chromyl chloride is dissolved in water.

  3. Free Chlorine is produced by heating the sample with manganese dioxide (MnO2) and concentrated sulfuric acid.


Here are Some Methods that Help to Determine the Presence of Free Chlorine:

  1. An aqueous solution of potassium iodide (KI) is shaken with a chlorine-containing gas, and the resulting iodine is measured by titration.

  2. Alkali arsenite (e.g., NaAsO2) reduces Chlorine in an alkaline solution. Excess arsenite is back titrated with potassium bromate (KBrO3).

  3. In the presence of o-toluidine in hydrochloric acid, colourimetric measurements are performed.

2. Mention Some Critical Physical and Chemical Properties of Chlorine.

A: Here are a Few Main Physical Properties of Chlorine:

  1. Chlorine has a greenish-yellow colour.

  2. The odour of Chlorine is strong, suffocating, and pungent.

  3. Chlorine is around two times heavier than the natural air.

  4. Chlorine is a poisonous gas that also causes a headache, and thus it must be used cautiously.

  5. Chlorine is water-soluble, and the aqueous solution of Chlorine is called Chlorine water. Chlorine is highly soluble in organic solvents, including carbon tetrachloride. Chlorine can easily be liquefied into a greenish-yellow liquid that boils at 239K.


Here are the Main Chemical Properties of Chlorine:

  • Chlorine forms chloro-organics or chloramines when it reacts with organic compounds and ammonia. Chloramines are a type of chlorine compound with disinfectant properties detected in a chlorine residue test.

  • It's a reducing agent that's used in wastewater. The term "chlorine demand" refers to these types of reactions. The following is the reaction: H2O + Cl2 ⇔ HCl + HClO