Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Maltase - Enzyme

ffImage
Last updated date: 25th Apr 2024
Total views: 334.8k
Views today: 3.34k
hightlight icon
highlight icon
highlight icon
share icon
copy icon

Introduction to Maltase

Maltase is defined as an enzyme that catalyzes the disaccharide maltose hydrolysis to the simple sugar glucose. This enzyme is present in bacteria, yeast, and plants, and it is thought to be generated by cells of the mucous membrane lining the intestinal wall in humans and other vertebrates. 


Maltase

During the digestion process, starch is partially transformed into maltose by salivary or pancreatic enzymes, called amylases; Maltase is secreted by the intestine and then converts maltose into glucose. The body either uses the glucose or stores it as glycogen, also known as animal starch, in the liver.


Intestinal Enzymes

Six intestinal enzymes are needed for starch digestion, two of which are luminal endo-glucosidases, also known as alpha-amylases. The remaining four enzymes have been identified as various maltases, exo-glucosidases bound to the enterocytes' luminal surface. The sucrase-isomaltase system was linked to two of these maltase activities (maltase Ib, maltase Ia). The rest of the two maltases with no distinguishing characteristics were named maltase-glucoamylase (also called maltases II and III). Since they all digest linear starch oligosaccharides to glucose, these four maltases are also known as alpha-glucosidase.


It is similar to alpha-glucosidase in several ways, but the term "maltase" emphasizes the disaccharide nature of the substrate, where the glucose is cleaved, whereas "alpha-glucosidase" emphasizes the bond, whether the substrate is polysaccharide or disaccharide.


Vampire bats are said as the only vertebrates, which are known to not exhibit intestinal maltase activity.

 

Structure

Maltase is a member of the GH13 (Glycoside hydrolase family 13) of intestinal enzymes that are responsible for transforming complex carbohydrates' - glucosidase linkages into simple glucose molecules for usage. Then, these glucose molecules would be used as a sort of "food" for cells to produce the energy (it means, Adenosine triphosphate) during Cellular respiration. The genes that can code for maltase are given below:

  • Acid alpha-glucosidase that is coded on the GAA gene is required to break down complex sugars known as Glycogen into glucose.

  • Maltase-glucoamylase, coded on the MGAM gene, plays a vital role in the digestion of starches. This is because of this enzyme in humans that starches of plant origin are able to digest.

  • Sucrase-isomaltase, coded on the SI gene, is required for the digestion of carbohydrates, including sucrose, isomaltose, and starch.

  • Alpha-amylase 1, which is encoded by the AMY1A gene, is responsible for cleaving -glucosidase linkages in polysaccharides and oligosaccharides to generate glycogen and starches, which are then catalyzed by the previous enzymes. This gene's higher quantities in the brain have been represented to lower the risk of Alzheimer's disease.


Mechanism

The hydrolysis of alpha-glucosidase linkage is the mechanism of all Family GH13 enzymes. Maltase focuses on dissolving maltose, which is a disaccharide with a -(1->4) bond connecting two units of glucose. The substrate size determines the rate of hydrolysis (or the carbohydrate size).


Maltase Deficiency

Acid Maltase Deficiency (AMD), also called Pompe disease, was first described in 1932 by a Dutch pathologist named JC Pompe. AMD is given as a non-sex-linked autosomal recessive condition, where the excessive accumulation of glycogen builds up within the lysosome vacuoles in nearly all types of cells and all over the body. It is the most serious glycogen storage disease that affects muscle tissue.


AMD is also categorized into three separate types according to the age of onset of the symptoms in affected individuals. Infantile (which is Type a), childhood (which is Type b), and adulthood (which is Type c). The AMD type is defined by the gene mutation type, which was localized in 17q23. At the same time, the mutation type will determine the production level of acid maltase. AMD is fatal, and type-a generally dies of heart failure before age one. Type-b die of respiratory failure between 3-24 ages. And, type-c die of respiratory failure at the age of 10-20 of the onset of symptoms.

 

Production of Maltase Enzyme

Starch is partially transformed into maltose during the digestion process by the salivary or pancreatic enzymes known as amylases (amylase maltase); maltase is secreted by the intestine and then converts maltose into glucose. The so-produced glucose is either utilized by the body or can be stored in the liver as glycogen (or called animal starch).

 

Industrial Applications

Alpha-amylase contains an essential function in the degradation of starches, so it is extremely and commonly used in the baking industry of baking. Also, it is mostly used as a means of flavor, enhancing it to improve bread quality. With no alpha-amylase, the yeast would not be possible to ferment.


Commonly, maltose-glucoamylase can be used as a fermentation source as it is capable of cutting starch into maltose that can then be used for brewing sake and beers.


Maltose glucoamylase has been studied outside of brewing by adding complex inhibitors to avoid the hydrolysis of alpha-glucosidase linkages. By inhibiting the linkage cleave, scientists are hoping to devise a drug that is less toxic and more efficient to treat diabetes.


Amino Acids in Maltase

We have learned already that maltase is a very important part of our body mechanism and plays a vital role in it. We have also seen what deficiency of maltase can cause and how it helps in the process of conversion of maltose into glucose. Now let’s understand which amino acids are present in maltase. Studies have shown that tryptophan, histidine, and cysteine are required for both maltase and glucoamylase activities in the kidney enzyme, whereas tryptophan, histidine, and lysine were required for maltase and glucoamylase activities in the intestine enzyme.


Maltase Use in Yeast and its Mechanism

Maltase is a part of our daily life but also it has many daily life applications one of which is bread.  Interestingly, the enzyme maltase, which converts maltose to glucose, is present in the yeast which is used in bread-making. Now let’s understand the mechanism of how maltase helps yeast in the making of bread. A maltose molecule is first absorbed by the yeast cell and maltase then binds it to maltose, splitting it into two or half. Invertase, like sucrose, is a sucrose-breaking enzyme that is also found in yeast cells. This enzyme works on the flour's small amount of sucrose. These two enzymes invertase and maltase which are responsible for creating a large portion of the glucose required for yeast to ferment and form the final product which is bread.

 

Effect of pH on Enzymes

In chemistry pH is a key term that is commonly heard either it’s experimenting in labs or going through theories, similarly the pH is also connected to enzymes as enzymes are also affected by the changes in the pH level. Many things can be scaled on the basis of pH in chemistry, similarly determining what will be the right pH helps a lot in the case of enzymes too. In this case, the most favorable pH value helps in determining the point at which the enzyme is most active and this point is also known as the optimum pH.


The extreme level of high or low pH values sometimes results in a complete loss of activity in most of the enzymes. pH is also a key factor in maintaining the stability of enzymes. As with the activity, for each of the enzymes, there is also a region of pH optimal stability.


Enzymes their Substrates and the End-products

There are many other enzymes along with maltase that play a vital role in the digestion process in the human body as well as in other processes but in which they form their substrate and an end product. Let's have a look at a few enzymes including maltase with their substrate and end products.

  1. Maltase- The substrate of maltase is maltose which when carried further in the process gives glucose as the final product or end product.

  2. Protease- Protease is an enzyme that is produced in the stomach and pancreas. The substrate of protease is protein and the end product is amino acids.

  3. Lipase- Lipase is produced in the pancreas; its substrate is lipids which in simple language can also be said as fats and oils for the main end product which are fatty acids and glycerol.

  4. Pancreatic amylase- The substrate of pancreatic amylase is starch which finally forms maltose as its final product and is also produced in the pancreas.

  5. Salivary amylase- Salivary amylase is produced in the salivary glands as can be understood by the name itself; its substrate is starch and the end product is maltose.

FAQs on Maltase - Enzyme

1. Explain the Role of Maltase?

The most important role of maltase as an enzyme in the human digestive system (also called maltase digestive enzyme) can be found when the starch is being assimilated into the maltose using pancreatic or salivary enzymes like amylase (amylase maltase). Once the amylase gets finished with its breaking down, these maltase enzymes transform the glucose. This process is essential in the overall health of one's digestive system and body. Once there is glucose present in the body, it can either be stored in the liver as an animal or glycogen starch or can be used for energy.

2. Explain which enzyme falls under which type of biomolecule?

Usually, enzymes are said to be proteins. However, RNA can form different tertiary confirmations, some of which contain catalytic activities, called Ribozymes. They contain deoxyzymes rarely, which are rare, and their ability to form different tertiary structures is limited by their double helix type of structure.

3. Explain About Endonuclease Enzymes?

Restriction enzyme, which is аlѕо known as rеѕtrісtіоn endonuclease - a рrоtеіn produced by the bасtеrіа, that сlеаvеѕ DNA at specific ѕіtеѕ аlоng with the molecule. Also, in the bасtеrіаl cell, the rеѕtrісtіоn enzymes сlеаvе foreign DNA, therefore еlіmіnаtіng the іnfесtіng оrgаnіѕmѕ.

4. What are LDH Enzymes?

Typically, LDH means Lactate Dehydrogenase. It is defined as a tetramer having four subunits. Maybe, the subunits either H or M polypeptide chains.


These four subunits together further form five isoenzymes when they combine in different proportions. They are H4 (which is written as HHHH), H3M1 (as HHHM), H2M2 (as HHMM), H1M3 (as HMMM), and M4 (as MMMM).

5. How was maltase discovered in which year was it discovered and by whom?

The discovery of maltase was done back in the year 1806 when Napoleon Bonaparte issued his "Berlin decree," which proclaimed a continental blockade. This sparked a hunt for other sugar sources. Anselm Payen and Jean-Francois Persoz who were two French chemists created a malt extract in 1833 which converted starch into glucose and they termed it as diastase at the time. H.T. Brown identified mucosal maltase activity in 1880 and distinguished it from diastase, which is today known as amylase. Arne Dahlqvist and Giorgio Semenza were able to fractionate and characterize tiny intestine maltase activity in the 1960s which led to further developments in protein chemistry. Both groups discovered that two distinct peptide structures, sucrase-isomaltase and maltase-glucoamylase, had four significant percentages of maltase activity in them. Cloning and sequencing of the mucosal starch hydrolase verified Dahlqvist and Semenza's findings fifty years later when the world entered into the genomic era.