Maltase - Enzyme

Download PDF

What is a Maltase?

Bookmark added to your notes.
View Notes

Maltase is defined as an enzyme that catalyzes the disaccharide maltose hydrolysis to the simple sugar glucose. This enzyme is present in bacteria, yeast, and plants, and it is thought to be generated by cells of the mucous membrane lining the intestinal wall in humans and other vertebrates. 

During the digestion process, starch is partially transformed into maltose by salivary or pancreatic enzymes, called amylases; Maltase is secreted by the intestine and then converts maltose into glucose. The body either uses the glucose or stores it as glycogen, also known as animal starch, in the liver.

Intestinal Enzymes

Six intestinal enzymes are needed for starch digestion, two of which are luminal endo-glucosidases, also known as alpha-amylases. The remaining four enzymes have been identified as various maltases, exo-glucosidases bound to the enterocytes' luminal surface. The sucrase-isomaltase system was linked to two of these maltase activities (maltase Ib, maltase Ia). The rest of the two maltases with no distinguishing characteristics were named maltase-glucoamylase (also called maltases II and III). Since they all digest linear starch oligosaccharides to glucose, these four maltases are also known as alpha-glucosidase.

It is similar to alpha-glucosidase in several ways, but the term "maltase" emphasises the disaccharide nature of the substrate, where the glucose is cleaved, whereas "alpha-glucosidase" emphasises the bond, whether the substrate is polysaccharide or disaccharide.

Vampire bats are said as the only vertebrates, which are known to not exhibit intestinal maltase activity.


Maltase is a member of the GH13 (Glycoside hydrolase family 13) of intestinal enzymes that are responsible for transforming complex carbohydrates' - glucosidase linkages into simple glucose molecules for usage. Then, these glucose molecules would be used as a sort of "food" for cells to produce the energy (it means, Adenosine triphosphate) during Cellular respiration. The genes that can code for maltase are given below:

  • Acid alpha-glucosidase that is coded on the GAA gene is required to break down complex sugars known as Glycogen into glucose.

  • Maltase-glucoamylase, coded on the MGAM gene, plays a vital role in the digestion of starches. This is because of this enzyme in humans that starches of plant origin are able to digest.

  • Sucrase-isomaltase, coded on the SI gene, is required for the digestion of carbohydrates, including sucrose, isomaltose, and starch.

  • Alpha-amylase 1, which is encoded by the AMY1A gene, is responsible for cleaving -glucosidase linkages in polysaccharides and oligosaccharides to generate glycogen and starches, which are then catalysed by the previous enzymes. This gene's higher quantities in the brain have been represented to lower the risk of Alzheimer's disease.


The hydrolysis of alpha-glucosidase linkage is the mechanism of all Family GH13 enzymes. Maltase focuses on dissolving maltose, which is a disaccharide with a -(1->4) bond connecting two units of glucose. The substrate size determines the rate of hydrolysis (or the carbohydrate size).

Maltase Deficiency

Acid Maltase Deficiency (AMD), also called Pompe disease, was first described in 1932 by a Dutch pathologist named JC Pompe. AMD is given as a non-sex-linked autosomal recessive condition, where the excessive accumulation of glycogen builds up within the lysosome vacuoles in nearly all types of cells and all over the body. It is the most serious glycogen storage disease that affects muscle tissue.

AMD is also categorized into three separate types according to the age of onset of the symptoms in affected individuals. Infantile (which is Type a), childhood (which is Type b), and adulthood (which is Type c). The AMD type is defined by the gene mutation type, which was localized in 17q23. At the same time, the mutation type will determine the production level of acid maltase. AMD is fatal, and type-a generally dies of heart failure before age one. Type-b die of respiratory failure between 3-24 ages. And, type-c die of respiratory failure at the age of 10-20 of the onset of symptoms.

Production of Maltase Enzyme

Starch is partially transformed into maltose during the digestion process by the salivary or pancreatic enzymes known as amylases (amylase maltase); maltase is secreted by the intestine and then converts maltose into glucose. The so-produced glucose is either utilized by the body or can be stored in the liver as glycogen (or called animal starch).

Industrial Applications

Alpha-amylase contains an essential function in the degradation of starches, so it is extremely and commonly used in the industry of baking. Also, it is mostly used as a means of flavour, enhancing it to improve bread quality. With no alpha-amylase, the yeast would not be possible to ferment.

Commonly, maltose-glucoamylase can be used as a fermentation source as it is capable of cutting starch into maltose that can then be used for brewing sake and beers.

Maltose glucoamylase has been studied outside of brewing by adding complex inhibitors to avoid the hydrolysis of alpha-glucosidase linkages. By inhibiting the linkage cleave, scientists are hoping to devise a drug that is less toxic and more efficient to treat diabetes.

FAQ (Frequently Asked Questions)

1. Explain the Role of Maltase?

Answer: The most important role of maltase as an enzyme in the human digestive system (also called maltase digestive enzyme) can be found when the starch is being assimilated into the maltose using pancreatic or salivary enzymes like amylase (amylase maltase). Once the amylase gets finished with its breaking down, these maltase enzymes transform the glucose. This process is essential in the overall health of one's digestive system and body. Once there is glucose present in the body, it can either be stored in the liver as an animal or glycogen starch or can be used for energy.

2. Explain Enzyme Falls Under Which Type of Biomolecule?

Answer: Usually, enzymes are said to be proteins. However, RNA can form different tertiary confirmations, some of which contain catalytic activities, called Ribozymes. They contain deoxyzymes rarely, which are rare, and their ability to form different tertiary structures is limited by their double helix type of structure.

3. Explain About Endonuclease Enzymes?

Answer: Restriction enzyme, which is аlѕо known as rеѕtrісtіоn endonuclease - a рrоtеіn produced by the bасtеrіа, that сlеаvеѕ DNA at specific ѕіtеѕ аlоng with the molecule. Also, in the bасtеrіаl cell, the rеѕtrісtіоn enzymes сlеаvе foreign DNA, therefore еlіmіnаtіng the іnfесtіng оrgаnіѕmѕ.

4. What are LDH Enzymes?

Answer: Typically, LDH means Lactate Dehydrogenase. It is defined as a tetramer having four subunits. Maybe, the subunits either H or M polypeptide chains.

These four subunits together further form five isoenzymes when they combine in different proportions. They are H4 (which is written as HHHH), H3M1 (as HHHM), H2M2 (as HHMM), H1M3 (as HMMM), and M4 (as MMMM).