Courses for Kids
Free study material
Offline Centres
Store Icon

Aldehyde Group

Reviewed by:
Last updated date: 21st Jul 2024
Total views: 399.6k
Views today: 9.99k
hightlight icon
highlight icon
highlight icon
share icon
copy icon

What are Aldehydes?

Aldehyde definition or the aldehyde meaning can be given as the members of an organic chemical compounds class, represented by the general structural formula as R-CHO. R can be a hydrocarbon or hydrogen radical, which is substituted or unsubstituted.

Many aldehydes are flammable liquids and volatile, where at normal room temperature from vapor in the explosive concentrations. Explosion and fire precautions must be most rigorous in the lower members of the aldehyde family case. The safeguards concerning irritant properties must also be most extensive for the lower members and those with either an unsaturated or substituted chain.

Naturally Occurring Aldehydes

The most common functional group in the oxygen-containing organic compounds isolated from the biological sources is the carbonyl group. In common names, one of the two suffixes may indicate the presence of a carbonyl group in a molecule. We use the suffix '-al' if the carbonyl compound is an aldehyde. Else, we use the suffix '-one' if the carbonyl compound is a ketone. For example, retinal is an aldehyde that is required for vision. The first part of the name shows that this compound is present in the retina, whereas the suffix tells us it is an aldehyde. The other example of a common name is alpha ionone, which is a fragrant ketone responsible for the scent of irises, used in perfumes.

Carbonyl groups are there in some steroids. For example, an oral contraceptive and methandrostenolone, the synthetic steroids norethindrone, and an anabolic steroid contain a carbonyl group.

Let us look at the structures of a few naturally occurring aldehydes, which are given below.

[Image will be Uploaded Soon]

General Properties of Aldehydes

  • Physical State

Except for formaldehyde, a gas at room temperature, the most common aldehydes, and ketones are liquid at ordinary temperatures. The lower molecular mass aldehydes contain a sharp, rather unpleasant smell, whereas the higher molecular mass aldehydes and ketones have pleasant smelling. In fact, a few ketones are used in the perfumery, and some aromatic aldehydes, which are obtained from natural sources, have a fragrance that is very pleasant.

[Image will be Uploaded Soon]

  • Boiling Points

As aldehydes and ketones have polar carbonyl groups, there is molecular association because of the stronger dipole-dipole interactions between the opposite ends of the dipoles. Therefore, both aldehydes and ketones' boiling points are higher than those of non-polar alkanes and weakly polar ethers having comparable molecular masses. The boiling points of both aldehydes and ketones are lower than the alcohols of comparable molecular masses because of the absence of intermolecular hydrogen bonding. For example, the following compounds contain a molecular mass of around 60, whereas their boiling points are quite different.

[Image will be Uploaded Soon]

  • Solubility

The lower aldehydes and ketones like methanal, propanone, and ethanol are miscible with water in all proportions because they are able to form hydrogen bonds with water.

[Image will be Uploaded Soon]

The water solubility decreases sharply with an increase in molecular mass because of the increase in the length of a non-polar alkyl chain. However, all the aldehydes and ketones are soluble in organic solvents such as benzene ether, benzene, and more.

Uses of Aldehydes

Aldehydes are essential intermediates in manufacturing plasticizers, resins, dyes, and solvents. They are used in industries including food, textile, rubber, leather, plastics, chemical, and healthcare. The higher aliphatic aldehydes and the aromatic aldehydes are used in the manufacturing of essences and perfumes.

Aldehydes are majorly used in the manufacturing of acetic acid. It is also used to manufacture peracetic acid, ethyl acetate, pyridine derivatives, dyes, perfumes, synthetic flavouring agents, and plastics. The formaldehyde has an extensive range of uses that is related to both its germicidal and solvents properties. It is also used in plastics production.

Formaldehyde is a powerful germicide, antiseptic, fungicide and preservative, that can be used to disinfectant inanimate objects. Simultaneously, benzaldehyde is used in organic synthesis, primarily in the manufacturing of rubber accelerators and as a synthetic flavouring agent in food items. It is also used to manufacture perfumes, gasoline additives, plasticizers, and the synthesis of amino acids and flavourings.

Common Reactions

Let us look at the main and important reactions that fall under the concept,  Aldehydes.

  • Aldehydes

Aldehydes are highly reactive, which can participate in many reactions. The important reactions from the industrial perspective are given as follows.

(a) Condensations. As an example, to prepare plasticizers and polyols,

(b) Reduction to form alcohol, especially "oxo-alcohols".

Considering the biological perspective, the important reactions involve the addition of nucleophiles to the formal carbon in the formation of the hemiacetals (structures of aldose sugars) and imine (which is oxidative deamination).

  • Reduction

This is one of the important common reactions to be discussed besides others.

The formal group can be reduced readily to a primary alcohol (−CH₂OH). This conversion is accomplished typically by catalytic hydrogenation either directly or by the transfer of hydrogenation. Also, stoichiometric reductions are popular because they can be affected by sodium borohydride.

There are many such reactions that are used to define aldehydes, where the reduction is one of them.

FAQs on Aldehyde Group

1. Explain the Preparation of Aldehydes and Why They are Used in Perfumes?

Aldehydes are the compounds produced through primary alcohol oxidation. The acidified potassium dichromate (VI) solution, which is used as the oxidizing agent, may oxidize the aldehyde, which is further produced to a carboxylic acid. To stop at the aldehyde, we need to keep this from happening.

Aldehydes are the partial oxidation result, and they often derive the moniker that is given to them from the acid name it produces. They are also used to prepare synthetic resins and the creation of dyes, perfumes, flavourings, and other chemicals. At the same time, others are used as disinfectants and preservatives.

2. What are Naturally Occurring Aldehydes?

Many aldehyde traces are found in the essential oils and often contribute to their favorable odors, such as cilantro, cinnamaldehyde, and vanillin. Possibly due to the high reactivity of the formyl group, aldehydes are not common in various natural building blocks such as nucleic acids, amino acids, and lipids. However, most sugars are the derivatives of aldehydes. These aldoses exist as hemiacetals, which are the parent aldehyde's sort of masked form. For example, in an aqueous solution, only a tiny glucose fraction exists as the aldehyde.