
The mean of discrete observations \[{y_1},{y_2},.....,{y_n}\] is given by
A. \[\dfrac{{\sum\limits_{i = 1}^n {{y_i}} }}{n}\]
B. \[\dfrac{{\sum\limits_{i = 1}^n {{y_i}} }}{{\sum\limits_{i = 1}^n i }}\]
C. \[\dfrac{{\sum\limits_{i = 1}^n {{y_i}{f_i}} }}{n}\]
D. \[\dfrac{{\sum\limits_{i = 1}^n {{y_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}\]
Answer
218.1k+ views
- Hint: Discrete observations means the observations are distinct. There is a clear gap between the observations. Mean is a measure of the central tendency of a finite set of observations. It is also known as average. The average of some observations is obtained by dividing the sum of the observations by the total number of observations.
Formula used:
\[\text{ Mean of the observations} =\dfrac{\text{ (sum of the observations)}}{\text{(number of observations)}}\]
Complete step-by-step solution:
Here the observations are \[{y_1},{y_2},.....,{y_n}\]
Sum of the observations is \[{y_1} + {y_2} + ..... + {y_n}\], which can be expressed as the summation \[\sum\limits_{i = 1}^n {{y_i}} \], where \[i = 1,2,.....,n\]
and number of observations is \[n\].
Now, using the formula of mean, we get
\[m = \dfrac{{\sum\limits_{i = 1}^n {{y_i}} }}{n}\]
So, option A is correct.
Additional information:
The mean is the same as the average of the data. The sum of all observations divided by the number of observations is the mean of the data.
Discrete observation: If there is a separation between two observations, then data is known as discrete observations.
Note: \[\sum\limits_{i = 1}^n {{y_i}} \]represents the sum of the observations \[{y_1},{y_2},.....,{y_n}\], where \[i = 1,2,.....,n\]. You must have to write the starting value of \[i\] under the summation symbol \[\sum {} \]and the end value of \[i\] above the summation symbol. Since the value of \[i\] starts from \[1\] and ends at \[n\], so the number of values of \[i\] is equal to \[n\] and hence number of observations is \[n\].
Formula used:
\[\text{ Mean of the observations} =\dfrac{\text{ (sum of the observations)}}{\text{(number of observations)}}\]
Complete step-by-step solution:
Here the observations are \[{y_1},{y_2},.....,{y_n}\]
Sum of the observations is \[{y_1} + {y_2} + ..... + {y_n}\], which can be expressed as the summation \[\sum\limits_{i = 1}^n {{y_i}} \], where \[i = 1,2,.....,n\]
and number of observations is \[n\].
Now, using the formula of mean, we get
\[m = \dfrac{{\sum\limits_{i = 1}^n {{y_i}} }}{n}\]
So, option A is correct.
Additional information:
The mean is the same as the average of the data. The sum of all observations divided by the number of observations is the mean of the data.
Discrete observation: If there is a separation between two observations, then data is known as discrete observations.
Note: \[\sum\limits_{i = 1}^n {{y_i}} \]represents the sum of the observations \[{y_1},{y_2},.....,{y_n}\], where \[i = 1,2,.....,n\]. You must have to write the starting value of \[i\] under the summation symbol \[\sum {} \]and the end value of \[i\] above the summation symbol. Since the value of \[i\] starts from \[1\] and ends at \[n\], so the number of values of \[i\] is equal to \[n\] and hence number of observations is \[n\].
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main 2025 Question Papers With Solutions (January and April Sessions)

Adjoint and Inverse of a Matrix Explained for Students

Algebra Formula Guide: Key Equations & Examples for Students

Area Formula for Quadrilateral Explained Simply

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

