Frequency is recognized as the fundamental characteristic of a wave. The definition of frequency is defined as the calculation (measurement) of the sum of waves that are passing through one point in a unit of time.
We also know what velocity is. In short, it is the rate of change of displacement. We need a brief explanation to state the term ‘velocity'—the total distance covered by a point. Within the same wave is called the velocity of the wave.
Here is the relation between velocity and frequency:
V = f × λ
Here,
V = velocity of the wave measure (using m/s).
f = frequency of the wave measured (using Hz).
λ = wavelength of the wave measured (using m).
Do you know the characteristics of a wave? Wavelength, amplitude, frequency, and velocity these four parameters are the characteristics. If a wave has a constant wavelength, you may notice the increment of velocity as well as frequency.
These three parameters are interdependent. Scientists have published many theorems and formulas based on the relation between wavelength frequency and velocity in particle physics.
(Image to be added soon)
Let’s consider some examples which are related to the relation between frequency and wavelength and velocity:
When a particle is radiating a wave of constant wavelength, and the value of frequency is doubled, the radiated wave's velocity is also double.
When you notice a wave having a constant wavelength, and its frequency is four times its wavelength, then the velocity you observe is increased by four times.
Frequency is the total number of occurrences of a wave traveled in space (or vacuum) per unit of time. The unit for frequency is Hertz (Hz). Some common symbols are associated with frequency such as V and f.
The SI unit is Hz. S1 is the SI base unit. The dimension for frequency is T1. The measurement of frequency is the total occurrences obtained due to a repeating wave per second.
The more is the period in the duration of time; the less will be the occurrences. Hence, occurrences and frequency both are reciprocal to each other.
To rectify any kind of oscillatory and vibratory phenomena, physicists use frequency at most. They use frequency to determine the calculation of mechanical vibrations, sound (audio signals), light, and radio waves.
The number of cycles per unit time – the statement is used to define many cyclical processes. Those cyclical processes are waves, oscillation, frequency, and rotation, and so on. In particle physics, many physicists apply these terms to calculate certain values.
The relation between frequency and time is helping them quite enough to determine many requisite values for the benefits. Also, you will learn about frequency in optics, acoustics, and radio chapters from physics.
Frequency is denoted by a symbol (obtained from Latin letter) i.e. f
The relation between frequency and time is equal to f = 1/T
Before the invention of unit Hertz, physicists used the unit of cycles per second (cps) for frequency. This is a traditional unit of measurement. Engineers tried to calculate the frequency using certain mechanical devices.
Slower or longer waves are explained with the term ‘wave period’ (not frequency). Such waves are ocean surface waves. But waves like audio radio and light are expressed with the term ‘frequency’. These waves are faster and possess higher periods.
The table given below will show you the conversion of frequency to the period:
1. Do you know the three units that stand for frequency?
Well, in frequency, these three questions are used. These three units are written below:
Cycles Per Second
Waves Per Second
Vibrations Per Second
Also, physicists use Hertz for the calculation of very specific numbers. This unit is called Hz I short. The equivalent value of 1 hertz is 1 cycle per second.
2. What are the types of major frequencies used in physics?
Four types of frequencies are very common in Physics. The table is given below:
ELF (Extremely Low Frequency) 

HF (High Frequency) 

VHF (Very High Frequency) 

UHF (Ultra High Frequency) 

3. What are cyclic processes which use frequency?
You can call frequency as the total number of oscillations per unit of time. Cyclic processes are rotation, oscillation, waves, and so on use frequency to determine their particular intervals. When a cyclic process is completed (from one starting point to ending point), it is called frequency.
4. Which frequency is dangerous 50 Hz or 60 Hz?
50 to 60 Hz frequency is used as lowfrequency (AC). Both are quite sensitive. But 50 Hz frequency is dangerous in many cases. AC current with 50 hertz sometimes may encourage calamities.